Description
"Help Jimmy" 是在下图所示的场景上完成的游戏。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
Input
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1..N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Output
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。
Sample Input
1 3 8 17 20 0 10 8 0 10 13 4 14 3
Sample Output
23
题目大意:略。
大致思路:
稍微有些经验的基本都能看出这是一道简单dp。关键是能不能把状态转移方程想出来,感觉dp就是智商题 = =b。
一开始想的是dp[i][j]表示Jimmy到达第i个平台横坐标为j时所用的最短时间。后来发现数据太大不能开二维dp, 然后又想如果dp[i]只需要由dp[i-1]转移过来,那就可以用滚动数组或者一维数组求解,可是又发现并不一定是这样转移,要看上一层平台是否能够到达这一层。然后就一直死磕着想……最后还是没能想出来,果然dp还是太弱了233333
看了下别人的解题报告,发现自己有几个误区,首先,由于Jimmy到达下一层必定是从这一层的平台边缘跳下的,所以我之前想的用横坐标来表示第二维完全没必要,只要用0和1表示平台的左端和右端即可。而且之前我虽然第一维表示的是第几个平台,可实际思考时总想成第几层,这样会比较难想。而如果是用平台来转移,那么可以通过判断这一个平台能够到达的下一个平台来进行转移,问题似乎解决了。。。?
果然dp还是太弱,以后尽量每做一道dp都要写题解。
Show me the code:
//Help Jimmy.cpp -- Poj 1661
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
using namespace std;
typedef long long ll;
const int maxn = 1000 + 10;
const int maxx = 20000 + 10;
const int INF = 0x3f3f3f3f;
struct P{
int x, y, h;
};
P k[maxn];
int n, sx, sh, maxh;
int dp[maxn][2 + 10];
void Init()
{
dp[0][0] = dp[0][1] = 0;
for( int i=1; i<n; ++i )
{
dp[i][0] = dp[i][1] = INF;
}
}
void solve()
{
Init();
bool sleft, sright;
int ans = INF;
for( int i=0; i<n-1; ++i )
{
sleft = sright = false;
for( int j=i+1; j<n; ++j )
{
if( (sleft && sright) || k[i].h-k[j].h>maxh )
{
break;
}
if( !sleft && k[j].x<=k[i].x && k[i].x<=k[j].y && k[i].h!=k[j].h )
{
if( j==n-1 )
ans = min(ans, dp[i][0]+k[i].h);
else
{
dp[j][0] = min(dp[i][0]+k[i].h-k[j].h+k[i].x-k[j].x, dp[j][0]);
dp[j][1] = min(dp[i][0]+k[i].h-k[j].h+k[j].y-k[i].x, dp[j][1]);
}
sleft = true;
}
if( !sright && k[j].x<=k[i].y && k[i].y<=k[j].y && k[i].h!=k[j].h )
{
if( j==n-1 )
ans = min(ans, dp[i][1]+k[i].h);
else
{
dp[j][0] = min(dp[i][1]+k[i].h-k[j].h+k[i].y-k[j].x, dp[j][0]);
dp[j][1] = min(dp[i][1]+k[i].h-k[j].h+k[j].y-k[i].y, dp[j][1]);
}
sright = true;
}
}
}
printf("%d\n", ans);
}
bool comp(P a, P b)
{
return a.h > b.h;
}
int main()
{
int T;
scanf("%d", &T);
while( T-- )
{
scanf("%d %d %d %d", &n, &sx, &sh, &maxh);
for( int i=0; i<n; ++i )
{
scanf("%d %d %d", &k[i].x, &k[i].y, &k[i].h);
}
k[n].x = k[n].y = sx;
k[n].h = sh;
k[n+1].x = -maxx;
k[n+1].y = maxx;
k[n+1].h = 0;
n += 2;
sort(k, k+n, comp);
solve();
}
return 0;
}