| 数硬币 | ||||||
| ||||||
| Description | ||||||
|
Lili有很多不同面值的硬币,不同面值的硬币的重量也是不同的,现在知道了这堆硬币中含有的硬币的种类和面值,以及这堆硬币的总重量,你能算出Lili至少有多少钱么。。。
| ||||||
| Input | ||||||
|
本题有多组测试数据,每组数据输入的第一行有两个数w,n,w表示硬币的总重量,n代表硬币的种类数(1<=w<=10000, 1<=n<=50) 接下来n行,每行两个数a,b,a代表硬币的的面值,b代表硬币的重量(1<=a<=50000,1<=b<=10000)
| ||||||
| Output | ||||||
|
每个结果占一行,表示Lili至少拥有的钱,如果不存在则输出-1 | ||||||
| Sample Input | ||||||
100 2 1 1 30 50 5 2 10 3 20 4 | ||||||
| Sample Output | ||||||
60 -1 | ||||||
| Source | ||||||
| 2014 Winter Holiday Contest 1 | ||||||
| Author | ||||||
| cyh@hrbust |
明显的一道完全背包的题目,但是这次要的是最小值,所以我们这里初始化dp数组的时候要用0x1f1f1f1f来初始化~
然后max变成min就可以了
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct coin
{
int val,v;
}a[211212];
int dp[121121];
int main()
{
int c,n;
while(~scanf("%d%d",&c,&n))
{
for(int i=0;i<n;i++)
{
scanf("%d%d",&a[i].val,&a[i].v);
}
memset(dp,0x1f1f1f1f,sizeof(dp));
dp[0]=0;
for(int i=0;i<n;i++)
{
for(int j=a[i].v;j<=c;j++)
{
dp[j]=min(dp[j],dp[j-a[i].v]+a[i].val);
}
}
if(dp[c]!=0x1f1f1f1f)
printf("%d\n",dp[c]);
else
{
printf("-1\n");
}
}
}

本文介绍了一道经典的完全背包问题,目标是最小化价值总和。通过给出具体的代码实现,展示了如何解决这类问题,包括如何初始化dp数组及实现min操作。


721

被折叠的 条评论
为什么被折叠?



