国际象棋 | ||||||
| ||||||
Description | ||||||
国际象棋的棋盘是8*8的。一个骑士可以攻击到8个位置(和中国象棋的马的走法类似)。 在一个古老的游戏中,游戏者可以把一个骑士放在棋盘上,骑士就控制了它所在的位置。同时,骄傲的骑士可以从它可攻击的8个位置中,选择一个,作为它的控制领域。也就是说,一个骑士最多可以事实上控制棋盘中的两个格子。 游戏允许游戏者任意放置骑士,并且任意安排这些骑士所控制的格子。最后的目的是要用最少的骑士控制棋盘上的每一个格子。 小胖子在《巴多兰克斯经》上发现了这个古老的游戏,他哈哈大笑,很快就完成了这个简单的游戏。 这时候大胖子来串门了,他看了看这个游戏说:“太弱智了。干脆改成n*n的棋盘吧!”他想了想还不满意,又说:“另外还要把某些格子挖掉!”当然,这些挖掉的格子既不能放骑士,也不需要任何骑士去控制它。 这么一改,可把小胖子难住了。聪明的你能解决这个问题吗? | ||||||
Input | ||||||
本题有多组测试数据,每组测试数据占若干行。 每组数据的第一行输入一个正整数n(n<=20)。接下来若干行,每行输入两个数a, b,表示第a行第b列的格子被挖掉了,直到0 0结束。 | ||||||
Output | ||||||
仅一个整数并且换行,即最少放置的骑士数。 | ||||||
Sample Input | ||||||
3 2 2 0 0 | ||||||
Sample Output | ||||||
4 | ||||||
Author | ||||||
sunshine@hrbust |
思路:
1、经典的二分匹配模型,将放置的骑士作为左集合,将骑士选择控制的点作为右集合。然后枚举所有点,并且枚举出其八个可以控制的点,将其间连一条边(现在建立的相当于双向边)。
2、然后将建好的图跑一遍最大匹配匈牙利算法,因为建立的是双向边,那么其解/2==放置的骑士能够同时控制两个格子的数量。
3、那么其没有能够匹配的格子数(只能控制自己放置的位子上的骑士的个数)就是n*n-最大匹配数-去掉的格子数。
4、那么ans=最大匹配数/2+n*n-最大匹配数-去掉的格子数。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<vector>
using namespace std;
int a[55][55];
int match[55*55];
int vis[55*55];
vector<int >mp[55*55];
int fx[8]={-2,-1,1,2,2,1,-1,-2};
int fy[8]={1,2,2,1,-1,-2,-2,-1};
int n;
void getmap()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(a[i][j]==1)
{
for(int k=0;k<8;k++)
{
int x=i+fx[k];
int y=j+fy[k];
if(x>=1&&x<=n&&y>=1&&y<=n)
{
if(a[x][y]==1)
{
mp[(i-1)*n+j].push_back((x-1)*n+y);
}
}
}
}
}
}
}
int find(int u)
{
for(int i=0;i<mp[u].size();i++)
{
int v=mp[u][i];
if(vis[v]==0)
{
vis[v]=1;
if(match[v]==-1||find(match[v]))
{
match[v]=u;
return 1;
}
}
}
return 0;
}
int Slove()
{
memset(match,-1,sizeof(match));
int output=0;
for(int i=1;i<=n*n;i++)
{
memset(vis,0,sizeof(vis));
if(find(i)==1)output++;
}
return output;
}
int main()
{
while(~scanf("%d",&n))
{
int sum=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
a[i][j]=1;
}
}
for(int i=1;i<=n*n;i++)mp[i].clear();
while(1)
{
int x,y;
scanf("%d%d",&x,&y);
if(x==0&&y==0)break;
a[x][y]=0;
sum++;
}
getmap();
int ans=Slove();
printf("%d\n",ans/2+n*n-ans-sum);
}
}