浅析竞技游戏匹配机制-ELO算法

本文介绍了竞技游戏匹配机制中的ELO算法,从一般胜率预测算法出发,讨论了添加特殊假设后的算法以及基于不同分布的胜率预测,最终详细阐述了ELO算法及其在1v1和NvN场景中的应用和改进策略,包括收敛速度、匹配策略等,以提高游戏的公平性和玩家体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:本文部分内容源自一位论坛大神,但具体的来源很抱歉笔者已经忘记,如侵即删。


0 前言

近年来,游戏行业飞速发展,大量不同类型的游戏涌入各个平台映入大众眼帘,而对于竞技类游戏而言,其游戏平衡的关键如何使博弈的双方玩家游戏水平接近,势均力敌的对手更能给予玩家紧张刺激的游戏快感。

传统的排位算法有几种,如 ELO 算法、ATP 排名等等,目前传统的排位算法为国际象棋中的排位算法-国际等积分系统(ELO-rate-system), 即 ELO 算法,该名字命名于创作者埃洛教授自身。即使已经过去多年,ELO 算法还是作为基本的思想,广泛应用在了不同种类的竞技游戏中,如MOBA 游戏《英雄联盟》、《DOTA2》等等。除此之外,许多体育竞技项目也依旧基于该算法进行排位。

1 一般胜率预测算法

对于一场竞技比赛,参赛选手分别为甲与乙,作下列假设:
1.两名选手表现实力有所波动,服从一定分布,设为𝑥与𝑦。
2.两名选手的表现实力相互独立。
3.𝑥与𝑦对应的密度函数为𝑔(𝑥)与ℎ(𝑦),密度函数为𝐺(𝑥)与𝐻(𝑦)。

根据上述假设,可以得到胜率概率计算公式𝑃{𝑥 > 𝑦},即:
在这里插入图片描述
同理有
在这里插入图片描述
以上是一般的胜率预测算法,通常情况下直接求解比较困难,因为比赛选手的表现实力所服从的分布需要大量数据支撑,为了简化计算,可以做出一些相关的特殊假设并加以实验。

2 添加特殊假设后的胜率预测算法

对一般的胜率算法,可以在原有基础上新增如下假设,化简运算:
1.比赛双方甲与乙的表现实力均服从同一分布𝐷,且只由期望𝜇与方差𝜎决定。
2.设分布函数为𝐹(𝑡; 𝜇, 𝜎),密度函数为𝑓(𝑡; 𝜇, 𝜎),且密度函数关于𝑡 = 𝜇对称。
3.设密度函数满足

在这里插入图片描述
则分布函数满

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凡凡凡凡-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值