注:本文部分内容源自一位论坛大神,但具体的来源很抱歉笔者已经忘记,如侵即删。
文章目录
0 前言
近年来,游戏行业飞速发展,大量不同类型的游戏涌入各个平台映入大众眼帘,而对于竞技类游戏而言,其游戏平衡的关键是如何使博弈的双方玩家游戏水平接近,势均力敌的对手更能给予玩家紧张刺激的游戏快感。
传统的排位算法有几种,如 ELO 算法、ATP 排名等等,目前传统的排位算法为国际象棋中的排位算法-国际等积分系统(ELO-rate-system), 即 ELO 算法,该名字命名于创作者埃洛教授自身。即使已经过去多年,ELO 算法还是作为基本的思想,广泛应用在了不同种类的竞技游戏中,如MOBA 游戏《英雄联盟》、《DOTA2》等等。除此之外,许多体育竞技项目也依旧基于该算法进行排位。
1 一般胜率预测算法
对于一场竞技比赛,参赛选手分别为甲与乙,作下列假设:
1.两名选手表现实力有所波动,服从一定分布,设为𝑥与𝑦。
2.两名选手的表现实力相互独立。
3.𝑥与𝑦对应的密度函数为𝑔(𝑥)与ℎ(𝑦),密度函数为𝐺(𝑥)与𝐻(𝑦)。
根据上述假设,可以得到胜率概率计算公式𝑃{𝑥 > 𝑦},即:
同理有
以上是一般的胜率预测算法,通常情况下直接求解比较困难,因为比赛选手的表现实力所服从的分布需要大量数据支撑,为了简化计算,可以做出一些相关的特殊假设并加以实验。
2 添加特殊假设后的胜率预测算法
对一般的胜率算法,可以在原有基础上新增如下假设,化简运算:
1.比赛双方甲与乙的表现实力均服从同一分布𝐷,且只由期望𝜇与方差𝜎决定。
2.设分布函数为𝐹(𝑡; 𝜇, 𝜎),密度函数为𝑓(𝑡; 𝜇, 𝜎),且密度函数关于𝑡 = 𝜇对称。
3.设密度函数满足
则分布函数满