众所周知,蒜蒜是一名热爱工作的好员工,他觉得时间就是金钱,做事情总是争分夺秒。
这天晚上,蒜蒜一个人去吃晚饭。不巧的是,吃完饭以后就开始下雨了,蒜蒜并没有带雨伞出来。但是蒜蒜热爱工作,工作使他快乐,他要尽快赶回去写代码。
蒜蒜的公司在中关村,中关村这边地形复杂,有很多天桥、地下通道和马路交错在一起。其中,地下通道是可以避雨的,天桥和马路都没办法避。可以把中关村抽象成为 n 个点的地图(顶点编号为 1 到 n),其中有 m1 条地下通道,有 m2 条马路或者天桥,其中地下通道的长度为 1。蒜蒜吃饭的地方在 1 点,公司在 n 点。当然,蒜蒜虽然爱工作心切,但是他更不想淋很多雨,同时也不想浪费很多时间。于是他折中了一下——在保证他回到公司所走的路程总和小于等于 L 的情况下,他希望淋雨的路程和尽量的少。
请你赶紧帮热爱工作的蒜蒜规划一条路径吧,不要再让他浪费时间。
输入格式
第一行输入测试组数 T(1≤T≤20)。
接下来 T 组数据。
每一组数据的第一行输入四个整数 n(2≤n≤100),m1(0≤m1≤50),m2(0≤m2≤5000),L(1≤L≤108)。
接下里 m1 行,每行输入两个整数 a,b(1≤a,b≤n),表示 a 和 b 之间有一条地下通道。
接下里 m2 行,每行输入三个整数 u,v(1≤u,v≤n),c(1≤c≤106),表示 u 和 v 之间有一条长度为 c 的马路或者天桥。
所有路径都是双向的。
输出格式
对于每组数据,如果有满足要求的路径,输出一个整数,表示淋雨的路程长度,否则输出 −1。
样例输入
3 4 2 2 6 1 2 2 3 1 4 5 3 4 4 4 2 2 5 1 2 2 3 1 4 5 3 4 4 4 2 2 4 1 2 2 3 1 4 5 3 4 4
样例输出
4 5 -1
思路:
观察到m1非常小,那么我们设定dist【i】【j】表示从起点走到了点i,经过了j条地下通道的情况下的最短路径长度。
那么Ans=Min(Dist【i】【j】-j,Ans);
过程维护一下即可。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
struct node
{
int from,to,next,w,flag;
}e[1500000];
struct node2
{
int u,len;
}now,nex;
int n,m1,m2,L,cont;
int vis[150][350];
int dist[150][350];
int head[1500];
void add(int from,int to,int flag,int w)
{
e[cont].flag=flag;
e[cont].to=to;
e[cont].w=w;
e[cont].next=head[from];
head[from]=cont++;
}
void SPFA()
{
queue<node2>s;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
for(int j=0;j<=320;j++)
{
dist[i][j]=0x3f3f3f3f;
}
}
dist[1][0]=0;
now.len=0;
now.u=1;
s.push(now);
while(!s.empty())
{
now=s.front();s.pop();
int u=now.u;
int len=now.len;
vis[u][len]=0;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].to;
int w=e[i].w;
int flag=e[i].flag;
if(dist[v][len+flag]>=dist[u][len]+e[i].w)
{
dist[v][len+flag]=dist[u][len]+e[i].w;
if(vis[v][len+flag]==0)
{
vis[v][len+flag]=1;
nex.u=v;nex.len=len+flag;
s.push(nex);
}
}
}
}
int output=0x3f3f3f3f;
for(int i=0;i<=320;i++)
{
if(dist[n][i]<=L)
output=min(output,dist[n][i]-i);
}
if(output==0x3f3f3f3f)output=-1;
printf("%d\n",output);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
cont=0;
memset(head,-1,sizeof(head));
scanf("%d%d%d%d",&n,&m1,&m2,&L);
for(int i=1;i<=m1;i++)
{
int x,y;scanf("%d%d",&x,&y);
add(x,y,1,1);add(y,x,1,1);
}
for(int i=1;i<=m2;i++)
{
int x,y,w;scanf("%d%d%d",&x,&y,&w);
add(x,y,0,w);add(y,x,0,w);
}
SPFA();
}
}