众所周知,蒜蒜是一名热爱工作的好员工,他觉得时间就是金钱,做事情总是争分夺秒。
这天晚上,蒜蒜一个人去吃晚饭。不巧的是,吃完饭以后就开始下雨了,蒜蒜并没有带雨伞出来。但是蒜蒜热爱工作,工作使他快乐,他要尽快赶回去写代码。
蒜蒜的公司在中关村,中关村这边地形复杂,有很多天桥、地下通道和马路交错在一起。其中,地下通道是可以避雨的,天桥和马路都没办法避。可以把中关村抽象成为 nn 个点的地图(顶点编号为 11 到 nn),其中有 m_1m
1
条地下通道,有 m_2m
2
条马路或者天桥,其中地下通道的长度为 11。蒜蒜吃饭的地方在 11 点,公司在 nn 点。当然,蒜蒜虽然爱工作心切,但是他更不想淋很多雨,同时也不想浪费很多时间。于是他折中了一下——在保证他回到公司所走的路程总和小于等于 LL 的情况下,他希望淋雨的路程和尽量的少。
请你赶紧帮热爱工作的蒜蒜规划一条路径吧,不要再让他浪费时间。
输入格式
第一行输入测试组数 T(1 \le T \le 20)T(1≤T≤20)。
接下来 TT 组数据。
每一组数据的第一行输入四个整数 n(2 \le n \le 100)n(2≤n≤100),m_1(0 \le m_1 \le 50)m
1
(0≤m
1
≤50),m_2(0 \le m_2 \le 5000)m
2
(0≤m
2
≤5000),L(1 \le L \le 10^8)L(1≤L≤10
8
)。
接下里 m_1m
1
行,每行输入两个整数 a, b(1 \le a, b \le n)a,b(1≤a,b≤n),表示 aa 和 bb 之间有一条地下通道。
接下里 m_2m
2
行,每行输入三个整数 u, v(1 \le u, v \le n), c(1 \le c \le 10^6)u,v(1≤u,v≤n),c(1≤c≤10
6
),表示 uu 和 vv 之间有一条长度为 cc 的马路或者天桥。
所有路径都是双向的。
输出格式
对于每组数据,如果有满足要求的路径,输出一个整数,表示淋雨的路程长度,否则输出 -1−1。
样例输入
3
4 2 2 6
1 2
2 3
1 4 5
3 4 4
4 2 2 5
1 2
2 3
1 4 5
3 4 4
4 2 2 4
1 2
2 3
1 4 5
3 4 4
样例输出
4
5
-1
注意有重边。
dist[i][j]表示到达i并且经过j条地下道的最小距离。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int MAXN = 105;
const LL inf = 0x3f3f3f3f3f3f3f3f;
int n, m1, m2;
LL l;
LL dp[MAXN][MAXN][2];
LL dis[MAXN][MAXN];
bool vis[MAXN];
void dij()
{
memset(vis, false,sizeof(vis));
for(int i=1; i<=n; ++i)
dis[i][1]=dp[1][i][0];
for(int i=1; i<=n; ++i)
dis[i][0]=dp[1][i][1];
int v;
LL Min;
vis[1]=true;
for(int i=1; i<=n; ++i)
{
v=-1;
Min=inf;
for(int j=1; j<=n; ++j)
{
if(!vis[j])
{
for(int k=0; k<=m1; ++k)
if(Min>dis[j][k])
Min=dis[v=j][k];
}
}
if(Min==inf)//没有这个判断,很多答案为-1的情况会错,错了好久。
break;
vis[v]=true;
for(int j=1; j<=n; ++j)
{
if(!vis[j])
for(int k=0; k<=m1; ++k)
{
if(dp[j][v][0]!=inf&&dis[j][k+1]>dis[v][k]+dp[j][v][0])
dis[j][k+1]=dis[v][k]+dp[j][v][0];
else if(dp[j][v][1]!=inf&&dis[j][k]>dis[v][k]+dp[j][v][1])
dis[j][k]=dis[v][k]+dp[j][v][1];
}
}
}
LL ans=inf;
for(int k=0; k<=m1; ++k)
{
if(dis[n][k]+k<=l)
ans=min(ans,dis[n][k]);
}
if(ans!=inf)
printf("%lld\n", ans);
else
printf("-1\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
int a, b;
scanf("%d %d %d %lld", &n, &m1, &m2, &l);
for(int i=0; i<=60; ++i)
for(int j=0; j<=n; ++j)
dis[j][i]=inf;
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
{
for(int k=0; k<=1; ++k)
{
dp[i][j][k]=inf;
}
}
}
for(int i=1; i<=m1; ++i)
{
scanf("%d %d", &a, &b);
dp[a][b][0]=dp[b][a][0]=0;
}
LL c;
for(int i=1; i<=m2; ++i)
{
scanf("%d %d %lld", &a, &b, &c);
if(dp[a][b][0]==inf&&c<dp[a][b][1])
dp[a][b][1]=dp[b][a][1]=c;
}
dij();
}
return 0;
}