一、Combiner合并
-
Combiner是MR程序中Mapper和Reducer之外的一种组件。
-
Combiner组件的父类就是Reducer。
-
Combiner和Reducer的区别在于运行的位置Combiner是在每一个MapTask所在的节点运行;Reducer是接收全局所有Mapper的输出结果;
-
Combiner的意义就是对每一个MapTask的输出进行局部汇总, 以减小网络传输量。
-
Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv应该跟Reducer的输入kv类型要对应起来。
-
自定义Combiner实现步骤
(a)自定义一个Combiner继承Reducer,重写Reduce方法
public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
context.write(key,outV);
}
}
(b)在Job驱动类中设置:
job.setCombinerClass(WordCountCombiner.class);
二、Combiner合并案例实操
1.需求
统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。
输入数据
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
期望输出数据
期望:Combine输入数据多,输出时经过合并,输出数据降低。
2. 案例实操-方案一
(1)增加一个WordCountCombiner类继承Reducer
package com.atguigu.mapreduce.combiner;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountCombiner extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
//封装outKV
outV.set(sum);
//写出outKV
context.write(key,outV);
}
}
(2)在WordcountDriver驱动类中指定Combiner
// 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordCountCombiner.class);
3. 案例实操-方案二
(1)将WordcountReducer作为Combiner在WordcountDriver驱动类中指定
// 指定需要使用Combiner,以及用哪个类作为Combiner的逻辑
job.setCombinerClass(WordCountReducer.class);
运行程序,如下图所示