【MViTv2||图像分类||目标检测】Improved Multiscale Vision Transformers for Classification and Detection

【paper】||【Code】

摘要:

  • MViTv2就是基于MViT的一个改进版本
  • 作者想构建图像和视频分类以及目标检测的同一架构
  • MViTv2重点包含分解的位置嵌入和残差池化连接
  • MViTv2的池化注意力和窗口注意力机制的精确度比较,池化注意力更优。

动机:

  • 为不同的视觉识别任务设计结构历来都很难,最广泛的结构是将简单性和有效型结合。
  • vision transformer在高分辨率目标检测和时空视野理解任务中的应用仍然具有挑战性。
  • 重点:transforfmer的自注意力块是二次的!
  • 目前主流策略:窗口局部注意力;池化注意力。

方法:

  • 使用分解的位置距离进行平移不变的位置嵌入,以在Transformer块中注入位置信
  • 一种残差池化连接,用于补偿在注意力计算中池化的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MengYa_DreamZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值