摘要:
- MViTv2就是基于MViT的一个改进版本
- 作者想构建图像和视频分类以及目标检测的同一架构
- MViTv2重点包含分解的位置嵌入和残差池化连接
- MViTv2的池化注意力和窗口注意力机制的精确度比较,池化注意力更优。
动机:
- 为不同的视觉识别任务设计结构历来都很难,最广泛的结构是将简单性和有效型结合。
- vision transformer在高分辨率目标检测和时空视野理解任务中的应用仍然具有挑战性。
- 重点:transforfmer的自注意力块是二次的!
- 目前主流策略:窗口局部注意力;池化注意力。
方法:
- 使用分解的位置距离进行平移不变的位置嵌入,以在Transformer块中注入位置信
- 一种残差池化连接,用于补偿在注意力计算中池化的影响。