【python代码】Kittle数据集的ground truth生成深度图攻略|彩色深度图|代码无恼运行

该文详细介绍了如何处理KITT数据集,包括明确数据集特性,选择groundtruth,将深度图转换为NumPy数组并进行稀疏-插值-稠密处理,以及将深度图转换为彩色图像,使用了如NumPy、PIL和matplotlib等工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 目录

1.明确KITTLE数据集特性

2.选择groundtruth

3.转换深度图

4.转换彩色深度图


1.明确KITTLE数据集特性

KITTI数据集包含了来自车载传感器的多模态数据,包括激光雷达、摄像头和GPS/惯性测量单元(IMU)等。该数据集主要采集于城市环境中,涵盖了驾驶场景中的各种复杂情况,如城市街道、高速公路和乡村道路等。

2.选择groundtruth

选择KITTLE数据集中的proj_depth/groundtruth,选择需要的grouth truth。(细看懂的都懂)

3.转换深度图

 代码可直接执行:

  • 加载图像,将其转换为NumPy数组,并除以256。
  • 获取有效像素点的位置(xy)。
  • 获取有效像素点的深度值。
  • 生成一个大小为N×3的数组。

  • Load image, convert to numpy array and divide by 256
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MengYa_DreamZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值