hdu2993 斜率优化

108 篇文章 0 订阅

MAX Average Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4899    Accepted Submission(s): 1229


Problem Description
Consider a simple sequence which only contains positive integers as a1, a2 ... an, and a number k. Define ave(i,j) as the average value of the sub sequence ai ... aj, i<=j. Let’s calculate max(ave(i,j)), 1<=i<=j-k+1<=n.
 

Input
There multiple test cases in the input, each test case contains two lines.
The first line has two integers, N and k (k<=N<=10^5).
The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
 

Output
For every test case, output one single line contains a real number, which is mentioned in the description, accurate to 0.01.
 

Sample Input
  
  
10 6 6 4 2 10 3 8 5 9 4 1
 
   
 
 
非要自已写getint(),非常坑,这一题主要是,转化成斜率就好作了,用一个单调队列保存当前的最优解就可以了!
我们可以发现,ans = min((sum[i] - sum[j])/(i-j));
(sum[i] - sum[j])/(i-j)可以抽象看成斜率,那么每个数字可以看成一个点。如图
如果,当前队列中有i,j,那么现在加入一个k,我们可以得出j是无效的,为什么呢? kij,表i,j的斜率 1:kik > kjk,所以这种情况下,j是无效的。 2:如果以后会出现一个t点,t在jk线的上方,那么2号线不如3号线,j是无效的,如果t 在jk线的下方,那么5号线不如6号线,j也是无效的。 所以综合以上情况j是无效的,直接从单调队列中除去。所以要统护如图样的一个向下凸的线。 如图二,目前,队列中有i,j,k这样三点成向下凸的线,目前出现了t点, 由于ktk > ktj > kti,所以把队头的i,j直接除去了,这样,会不会对以后的结果造成影响呢,其实,i,j不会有影响。 1,如果,以后的点有个t2在jk的上方,必然是kt2k更大,i,j无用,如果t2在j,k的下方,虽然kjt2 >kkt2,但由于,kjt2 < kjk < kkt,所以直接可以忽略i,j,对以后,不会有任何影响。
通过这个图,我们也可以发现,点的横坐标是要递增,纵坐标也是要递增的,这也是能用斜率优化的前题,以后,这点,也是很有必要注意的。

Sample Output
  
  
6.50
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
#define MAXN 100005
struct node {
    double  x,y;
}q[MAXN];
int prime[MAXN],sum[MAXN];
double maxx;

int getint()
{
    char c;
    int sum;
    while(c=getchar())
    {
        if(c>='0'&&c<='9')
        {
            sum=c-'0';
            break;
        }
    }
    while(c=getchar())
    {
        if(c<'0'||c>'9')
        {
            break;
        }
        sum=sum*10+c-'0';
    }
    return sum;
}
double fmax(double a,double b)
{
    if(a>b)
        return a;
    return b;
}
bool afterm(node a,node b,node c)/*后面的大返回真*/
{
    if((c.y-b.y)*(b.x-a.x)-(b.y-a.y)*(c.x-b.x)>0)
        return true;
    return false;
}
int main()
{
    int n,k,i,s,e;
    node temp,current;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        memset(sum,0,sizeof(sum));
        sum[0]=0;
        for(i=1;i<=n;i++)
        {
            prime[i]=getint();
            sum[i]=sum[i-1]+prime[i];
        }
        s=e=0;maxx=-1;
        for(i=k;i<=n;i++)
        {
            temp.y=sum[i-k];
            temp.x=i-k;
            current.x=i;
            current.y=sum[i];
            while(s<e&&!afterm(q[e-1],q[e],temp))/*保持斜率单调递增*/
            {
                e--;
            }
            q[++e]=temp;
            while(s<e&&afterm(q[s],q[s+1],current))/*新加的斜率比头要大,去掉头*/
            {
                s++;
            }
            maxx=fmax(maxx,(double )(current.y-q[s].y)*1.0/(current.x-q[s].x));
        }
        printf("%.2f\n",maxx);
    }
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值