转载地址: http://blog.sina.com.cn/s/blog_5e9e98210100vvrx.html
插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。
最邻近插值(近邻取样法):
最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高
双线性内插值:
对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:
f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)
其中f(i,j)表示源图像(i,j)处的的像素值,以此类推
这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊
三次卷积法能够克服以上两种算法的不足,计算精度高,但计算亮大,他考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目的像素值f(i+u,j+v)可由如下插值公式得到:
f(i+u,j+v) = [A] * [B] * [C]
[A]=[ S(u + 1) S(u + 0) S(u - 1) S(u - 2) ]
┏ f(i-1, j-1) f(i-1, j+0) f(i-1, j+1) f(i-1, j+2) ┓
[B]=┃ f(i+0, j-1) f(i+0, j+0) f(i+0, j+1) f(i+0, j+2) ┃
┃ f(i+1, j-1) f(i+1, j+0) f(i+1, j+1) f(i+1, j+2) ┃
┗ f(i+2, j-1) f(i+2, j+0) f(i+2, j+1) f(i+2, j+2) ┛
┏ S(v + 1) ┓
[C]=┃ S(v + 0) ┃
┃ S(v - 1) ┃
┗ S(v - 2) ┛
┏ 1-2*Abs(x)^2+Abs(x)^3 , 0<=Abs(x)<1
S(x)={ 4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3 , 1<=Abs(x)<2
┗ 0 , Abs(x)>=2
S(x)是对 Sin(x*Pi)/x 的逼近(Pi是圆周率——π)
最邻近插值(近邻取样法)、双线性内插值、三次卷积法 等插值算法对于旋转变换、错切变换、一般线性变换 和 非线性变换 都适用。
转载地址 :http://blog.sina.com.cn/s/blog_4718dd930100m9jm.html
三次立方卷积—cubic函数
f(i+u,j+v) = [A] * [B] * [C]
[A]=[ S(u + 1)
┏ f(i-1, j-1)
[B]=┃ f(i+0, j-1)
┃ f(i+1, j-1)
┗ f(i+2, j-1)
┏ S(v + 1) ┓
[C]=┃ S(v + 0) ┃
┃ S(v - 1) ┃
┗ S(v - 2) ┛
S(x)= ┃4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3
S(x)是对 Sin(x*Pi)/xPi 的逼近(Pi是圆周率——π)
即对源图像进行插值扩大。通过上面的算法,将扩大图像索引到原图像坐标(具体见双线性插值),寻找到它的领域,即举证B,再按第一个公式进行计算。但它有个缺点。不能计算图像的第一行,第一列、最后两行,与最后两列进行插值计算,这是由于矩阵B的领域决定的。
srcX = dstX* (srcWidth/dstWidth) , srcY = dstY * (srcHeight/dstHeight);
例如原图是3*3大小,插值后变为4*4大小,按照这个插值公式,目标图的像素点(1,1)由原图的
(1*(3/4),1*(3/4))=> (*0.75,0.75)=>(1,1),即有原图的像素点(1,1)得到。
双线型内插值算法:
f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)
比如,假如像上面例子中,目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四 个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一 些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些, 公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点。