[2021ICPC上海 B] Strange Permutations (容斥 分治NTT)

题意

给定一个长度为 n n n 1 ∼ n 1 \sim n 1n 排列 P P P,找到有多少个 1 ∼ n 1 \sim n 1n 的排列 Q Q Q 使得 ∀ i ∈ [ 1 , n − 1 ] , Q i + 1 ≠ P Q i \forall i \in[1, n - 1], Q_{i + 1} \ne P_{Q_i} i[1,n1],Qi+1=PQi

998244353 998244353 998244353 取模

( 1 ≤ n ≤ 1 0 5 , 1 ≤ P i ≤ n ) (1 \le n \le 10 ^ 5, 1 \le P_i \le n) (1n105,1Pin)

分析:

如果只观察式子可能看不出什么规律,我们可以把条件转化为 n n n 个点的图,考虑把排列 Q Q Q 表示为边集 ( Q 1 , Q 2 ) , ( Q 2 , Q 3 ) , ⋯   , ( Q n − 1 , Q n ) \\{(Q_1, Q_2),(Q_2, Q_3),\cdots,(Q_{n-1},Q_n)\\} (Q1,Q2),(Q2,Q3),,(Qn1,Qn) ,那么排列 P P P 的意思就是图中不能存在边集 ( 1 , P 1 ) , ( 2 , P 2 ) , ⋯   , ( n , P n ) \\{(1,P_1),(2,P_2),\cdots,(n,P_n)\\} (1,P1),(2,P2),,(n,Pn) ,那么就等价于在一张图中选一条哈密顿路径的方案数,所以考虑对每条不存在的边集进行容斥。考虑计算选了 i i i 个不存在的边的方案数,发现排列 P P P 一定会成环,所以对于每个 k k k 元环可以选择 0 ∼ k − 1 0 \sim k - 1 0k1 个不存在的边(哈密顿路径无环所以不能包含 k k k 个不存在的边),那么可以用生成函数 f ( k ) f(k) f(k) 来表示
f ( k ) = 1 + ( k 1 ) x + ( k 2 ) x 2 + ( k 3 ) x 3 + ⋯ + ( k k − 1 ) x k − 1 f(k) = 1 + \binom{k}{1}x + \binom{k}{2}x ^ 2 + \binom{k}{3}x ^ 3 + \cdots + \binom{k}{k - 1}x ^ {k - 1} f(k)=1+(1k)x+(2k)x2+(3k)x3++(k1k)xk1
x x x 项的系数 m m m 表示 k k k 元环中选了 m m m 条不存在的边,那么系数显然是 ( k m ) \dbinom{k}{m} (mk)

所以只需找出排列 P P P 的所有环及其环的大小,假设有 t t t a 1 , a 2 , ⋯   , a t a_1,a_2,\cdots,a_t a1,a2,,at a i a_i ai 表示第 i i i 个环的大小。

那么方案就是
∏ i = 1 t f ( a i ) \prod_{i = 1} ^ {t} f(a_i) i=1tf(ai)
做一次分治 NTT \text{NTT} NTT 或启发式合并得到多项式 F ( x ) F(x) F(x)

最后容斥计算答案,钦定选了 i i i 条不存在的边其他边的数量就是 ( n − i ) ! (n - i)! (ni)! 那么最后的答案就为
∑ i = 0 n ( − 1 ) i ( n − i ) ! [ x i ] F ( x ) \sum_{i = 0} ^ {n}(-1) ^ i(n - i)![x^i]F(x) i=0n(1)i(ni)![xi]F(x)
时间复杂度 O ( n log ⁡ 2 n ) O(n\log ^2n) O(nlog2n)

代码:

#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
int norm(int x) {
    if (x < 0) {
        x += mod;
    }
    if (x >= mod) {
        x -= mod;
    }
    return x;
}
template<class T>
T power(T a, int b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(mod - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, mod - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % mod;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend istream &operator>>(istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend ostream &operator<<(ostream &os, const Z &a) {
        return os << a.val();
    }
};
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i ++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i ++) {
        if (rev[i] < i) {
            swap(a[i], a[rev[i]]);
        }
    }
    if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(3), (mod - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i ++) {
                roots[i << 1] = roots[i];
                roots[i << 1 | 1] = roots[i] * e;
            }
            k ++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j ++) {
                Z u = a[i + j], v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v, a[i + j + k] = u - v;
            }
        }
    }
}
void idft(vector<Z> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - mod) / n;
    for (int i = 0; i < n; i ++) {
        a[i] *= inv;
    }
}
struct Poly {
    vector<Z> a;
    Poly() {}
    Poly(const vector<Z> &a) : a(a) {}
    Poly(const initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = min(k, size());
        return Poly(vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; i ++) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Z a, Poly b) {
        for (int i = 0; i < int(b.size()); i ++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < int(a.size()); i ++) {
            a[i] *= b;
        }
        return a;
    }
    Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; i ++) {
            res[i] = (i + 1) * a[i + 1];
        }
        return Poly(res);
    }
    Poly integr() const {
        vector<Z> res(size() + 1);
        for (int i = 0; i < size(); i ++) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i ++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
};
signed main() {
    cin.tie(0) -> sync_with_stdio(0);
    int n;
    cin >> n;
    vector<Z> fact(n + 1), infact(n + 1);
    fact[0] = infact[0] = 1;
    for (int i = 1; i <= n; i ++) {
        fact[i] = fact[i - 1] * i;
    }
    infact[n] = fact[n].inv();
    for (int i = n - 1; i; i --) {
        infact[i] = infact[i + 1] * (i + 1);
    }
    auto C = [&](int m, int n) {
        if (n < 0 || m < 0 || m < n) return Z(0);
        return fact[m] * infact[m - n] * infact[n];
    };
    vector<int> p(n + 1);
    for (int i = 1; i <= n; i ++) {
        cin >> p[i];
    }
    vector<bool> st(n + 1);
    vector<int> cnt;
    int circle = 0;
    for (int i = 1; i <= n; i ++) {
        if (st[i]) {
            continue;
        }
        cnt.push_back(0);
        for (int j = i; !st[j]; j = p[j]) {
            st[j] = true, cnt[circle] ++;
        }
        circle ++;
    }
    int idx = 0;
    vector<Poly> f(n + 1);
    for (int i = 0; i < circle; i ++) {
        if (!cnt[i]) {
            continue;
        }
        idx ++;
        f[idx].resize(cnt[i]);
        for (int j = 0; j < cnt[i]; j ++) {
            f[idx][j] = C(cnt[i], j);
        }
    }
    function<Poly(int, int)> dc = [&](int l, int r) {
        if (l == r) return f[l];
        int mid = l + r >> 1;
        return dc(l, mid) * dc(mid + 1, r);
    };
    Poly ans = dc(1, idx);
    ans.resize(n + 1);
    Z res;
    for (int i = 0; i <= n; i ++) {
        if (i & 1) {
            res -= fact[n - i] * ans[i];
        } else {
            res += fact[n - i] * ans[i];
        }
    }
    cout << res << "\n";
}
  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值