[2023 杭电多校9 K] Cargo (生成函数 多项式 快速阶乘)

题意

n n n 个商店卖 m m m 种商品,每个商店只无限卖一种商品,第 i i i 个商店卖第 a i a_i ai 种类型商品。

你将购物 k k k 次,每次随机选择某个商店购买一件商品。购物完后,以下情况你将不满意:

  • 存在一个商品类型 i i i,你恰好购买了该类型商品 c i c_i ci 个,并且这 c i c_i ci 个商品恰好来自不同的商店。( c i c_i ci 表示卖类型 i i i 的商品的商店个数)

求购物 k k k 次后使你满意的概率,对 998   244   353 998\,244\,353 998244353 取模。(购物带标号)

( 1 ≤ m ≤ n ≤ 2 × 1 0 5 , 1 ≤ a i ≤ m , 1 ≤ k < 998   244   353 ) (1 \le m \le n \le 2 \times 10 ^ 5,1 \le a_i \le m, 1 \le k < 998\,244\,353) (1mn2×105,1aim,1k<998244353)

分析:

考虑计算满意的方案数。我们可以先分别考虑每种商品的方案数。

首先第 i i i 种类型的商品有 c i c_i ci 个商店,由于带标号,那么每个商店的 EGF 就为 ∑ j = 0 ∞ x j j ! \sum\limits_{j = 0} ^ {\infty} \dfrac{x ^ j}{j!} j=0j!xj,一共 c i c_i ci 个商店,所以此类型商品的 EGF 就为 ( ∑ j = 0 ∞ x j j ! ) c i = e c i x \left(\sum\limits_{j = 0} ^ {\infty} \dfrac{x ^ j}{j!}\right) ^ {c_i} = e ^ {c_ix} (j=0j!xj)ci=ecix

现在考虑减掉不满意的条件,每个商店需要恰好选择一个商品,所以此情况就为 x c i x ^ {c_i} xci,这样满足题意的生成函数为 e c i x − x c i e ^ {c_ix} - x ^ {c_i} ecixxci

所以满意的总方案数就为
k ! [ x k ] ∏ i = 1 m ( e c i x − x c i + [ c i = 0 ] ) k![x ^ k]\prod_{i = 1} ^ {m}\left(e ^ {c_ix} - x ^ {c_i} + [c_i = 0]\right) k![xk]i=1m(ecixxci+[ci=0])
这里先令 e c i x = 1 e ^ {c_ix} = 1 ecix=1,也就是构造多项式 f ( x ) = 1 − x c i f(x) = 1 - x ^ {c_i} f(x)=1xci 进行分治 NTT,由于 ∑ i = 1 m c i = n \sum\limits_{i = 1} ^ {m}c_i = n i=1mci=n,所以多项式的项数最多到 n n n,我们直接枚举答案多项式系数 i i i,那么只需要求 e ( n − i ) x e ^ {(n - i)x} e(ni)x 的第 k − i k - i ki 项系数就好,即 ( n − i ) k − i ( k − i ) ! \dfrac{(n - i) ^ {k - i}}{(k - i)!} (ki)!(ni)ki

那么概率就为方案数除以所有情况 n k n ^ k nk 即可。

注意到 k < 998   244   353 k < 998\,244\,353 k<998244353,所以求阶乘时需要用到快速阶乘算法。

这里粗略用一下 O ( n log ⁡ 2 n ) O(\sqrt{n} \log ^ 2n) O(n log2n) 的做法:

n ! n! n! 分块,即构造多项式 f ( x ) = ∏ i = 1 ⌊ n ⌋ ( x + i ) f(x) = \prod\limits_{i = 1} ^ {\lfloor\sqrt{n}\rfloor}(x + i) f(x)=i=1n (x+i),用分治 NTT 求出,再对 f ( 0 ) , f ( n ) , f ( 2 n ) , ⋯   , f ( ⌊ n n ⌋ n ) f(0), f(\sqrt{n}), f(2\sqrt{n}), \cdots,f(\lfloor\dfrac{n}{\sqrt{n}}\rfloor \sqrt{n}) f(0),f(n ),f(2n ),,f(⌊n nn ) 进行多项式多点求值,最后乘起来即可。

此题时限 18 18 18 秒完全够用。

代码:

#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
constexpr int mod = 998244353;
template<class T>
T power(T a, int b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
template<int mod>
struct ModInt {
    int x;
    ModInt() : x(0) {}
    ModInt(i64 y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    ModInt &operator+=(const ModInt &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inv();
        return *this;
    }
    ModInt operator-() const {
        return ModInt(-x);
    }
    ModInt operator+(const ModInt &p) const {
        return ModInt(*this) += p;
    }
    ModInt operator-(const ModInt &p) const {
        return ModInt(*this) -= p;
    }
    ModInt operator*(const ModInt &p) const {
        return ModInt(*this) *= p;
    }
    ModInt operator/(const ModInt &p) const {
        return ModInt(*this) /= p;
    }
    bool operator==(const ModInt &p) const {
        return x == p.x;
    }
    bool operator!=(const ModInt &p) const {
        return x != p.x;
    }
    ModInt inv() const {
        int a = x, b = mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return ModInt(u);
    }
    ModInt pow(i64 n) const {
        ModInt res(1), mul(x);
        while (n > 0) {
            if (n & 1) res *= mul;
            mul *= mul;
            n >>= 1;
        }
        return res;
    }
    friend ostream &operator<<(ostream &os, const ModInt &p) {
        return os << p.x;
    }
    friend istream &operator>>(istream &is, ModInt &a) {
        i64 t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }
    int val() const {
        return x;
    }
    static constexpr int val_mod() {
        return mod;
    }
};
using Z = ModInt<mod>;
vector<Z> fact, infact;
void init(int n) {
    fact.resize(n + 1), infact.resize(n + 1);
    fact[0] = infact[0] = 1;
    for (int i = 1; i <= n; i ++) {
        fact[i] = fact[i - 1] * i;
    }
    infact[n] = fact[n].inv();
    for (int i = n; i; i --) {
        infact[i - 1] = infact[i] * i;
    }
}
Z C(int n, int m) {
    if (n < 0 || m < 0 || n < m) return Z(0);
    return fact[n] * infact[n - m] * infact[m];
}
vector<int> rev;
vector<Z> roots{0, 1};
void dft(vector<Z> &a) {
    int n = a.size();
    if (int(rev.size()) != n) {
        int k = __builtin_ctz(n) - 1;
        rev.resize(n);
        for (int i = 0; i < n; i ++) {
            rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
        }
    }
    for (int i = 0; i < n; i ++) {
        if (rev[i] < i) {
            swap(a[i], a[rev[i]]);
        }
    }
    if (int(roots.size()) < n) {
        int k = __builtin_ctz(roots.size());
        roots.resize(n);
        while ((1 << k) < n) {
            Z e = power(Z(3), (mod - 1) >> (k + 1));
            for (int i = 1 << (k - 1); i < (1 << k); i ++) {
                roots[i << 1] = roots[i];
                roots[i << 1 | 1] = roots[i] * e;
            }
            k ++;
        }
    }
    for (int k = 1; k < n; k *= 2) {
        for (int i = 0; i < n; i += 2 * k) {
            for (int j = 0; j < k; j ++) {
                Z u = a[i + j], v = a[i + j + k] * roots[k + j];
                a[i + j] = u + v, a[i + j + k] = u - v;
            }
        }
    }
}
void idft(vector<Z> &a) {
    int n = a.size();
    reverse(a.begin() + 1, a.end());
    dft(a);
    Z inv = (1 - mod) / n;
    for (int i = 0; i < n; i ++) {
        a[i] *= inv;
    }
}
struct Poly {
    vector<Z> a;
    Poly() {}
    Poly(const vector<Z> &a) : a(a) {}
    Poly(const initializer_list<Z> &a) : a(a) {}
    int size() const {
        return a.size();
    }
    void resize(int n) {
        a.resize(n);
    }
    Z operator[](int idx) const {
        if (idx < size()) {
            return a[idx];
        } else {
            return 0;
        }
    }
    Z &operator[](int idx) {
        return a[idx];
    }
    Poly mulxk(int k) const {
        auto b = a;
        b.insert(b.begin(), k, 0);
        return Poly(b);
    }
    Poly modxk(int k) const {
        k = min(k, size());
        return Poly(vector<Z>(a.begin(), a.begin() + k));
    }
    Poly divxk(int k) const {
        if (size() <= k) {
            return Poly();
        }
        return Poly(vector<Z>(a.begin() + k, a.end()));
    }
    friend Poly operator+(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] + b[i];
        }
        return Poly(res);
    }
    friend Poly operator-(const Poly &a, const Poly &b) {
        vector<Z> res(max(a.size(), b.size()));
        for (int i = 0; i < int(res.size()); i ++) {
            res[i] = a[i] - b[i];
        }
        return Poly(res);
    }
    friend Poly operator*(Poly a, Poly b) {
        if (a.size() == 0 || b.size() == 0) {
            return Poly();
        }
        int sz = 1, tot = a.size() + b.size() - 1;
        while (sz < tot) {
            sz *= 2;
        }
        a.a.resize(sz);
        b.a.resize(sz);
        dft(a.a);
        dft(b.a);
        for (int i = 0; i < sz; i ++) {
            a.a[i] = a[i] * b[i];
        }
        idft(a.a);
        a.resize(tot);
        return a;
    }
    friend Poly operator*(Z a, Poly b) {
        for (int i = 0; i < int(b.size()); i ++) {
            b[i] *= a;
        }
        return b;
    }
    friend Poly operator*(Poly a, Z b) {
        for (int i = 0; i < int(a.size()); i ++) {
            a[i] *= b;
        }
        return a;
    }
    Poly &operator+=(Poly b) {
        return (*this) = (*this) + b;
    }
    Poly &operator-=(Poly b) {
        return (*this) = (*this) - b;
    }
    Poly &operator*=(Poly b) {
        return (*this) = (*this) * b;
    }
    Poly deriv() const {
        if (a.empty()) {
            return Poly();
        }
        vector<Z> res(size() - 1);
        for (int i = 0; i < size() - 1; i ++) {
            res[i] = a[i + 1] * (i + 1);
        }
        return Poly(res);
    }
    Poly integr() const {
        vector<Z> res(size() + 1);
        for (int i = 0; i < size(); i ++) {
            res[i + 1] = a[i] / (i + 1);
        }
        return Poly(res);
    }
    Poly inv(int m) const {
        Poly x{a[0].inv()};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{2} - modxk(k) * x)).modxk(k);
        }
        return x.modxk(m);
    }
    Poly log(int m) const {
        return (deriv() * inv(m)).integr().modxk(m);
    }
    Poly exp(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k);
        }
        return x.modxk(m);
    }
    Poly pow(int k, int m) const {
        int i = 0;
        while (i < size() && a[i].val() == 0) {
            i ++;
        }
        if (i == size() || 1LL * i * k >= m) {
            return Poly(vector<Z>(m));
        }
        Z v = a[i];
        auto f = divxk(i) * v.inv();
        return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k);
    }
    Poly sqrt(int m) const {
        Poly x{1};
        int k = 1;
        while (k < m) {
            k *= 2;
            x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((mod + 1) / 2);
        }
        return x.modxk(m);
    }
    Poly mulT(Poly b) const {
        if (b.size() == 0) {
            return Poly();
        }
        int n = b.size();
        reverse(b.a.begin(), b.a.end());
        return ((*this) * b).divxk(n - 1);
    }
    vector<Z> eval(vector<Z> x) const {
        if (size() == 0) {
            return vector<Z>(x.size(), 0);
        }
        const int n = max(int(x.size()), size());
        vector<Poly> q(n << 2);
        vector<Z> ans(x.size());
        x.resize(n);
        function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                q[p] = Poly{1, -x[l]};
            } else {
                int m = l + r >> 1;
                build(p << 1, l, m);
                build(p << 1 | 1, m, r);
                q[p] = q[p << 1] * q[p << 1 | 1];
            }
        };
        build(1, 0, n);
        function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) {
            if (r - l == 1) {
                if (l < int(ans.size())) {
                    ans[l] = num[0];
                }
            } else {
                int m = (l + r) / 2;
                work(p << 1, l, m, num.mulT(q[p << 1 | 1]).modxk(m - l));
                work(p << 1 | 1, m, r, num.mulT(q[p << 1]).modxk(r - m));
            }
        };
        work(1, 0, n, mulT(q[1].inv(n)));
        return ans;
    }
    Poly inter(const Poly &y) const {
        vector<Poly> Q(a.size() << 2), P(a.size() << 2);
        function<void(int, int, int)> dfs1 = [&](int p, int l, int r) {
            int m = l + r >> 1;
            if (l == r) {
                Q[p].a.push_back(-a[m]);
                Q[p].a.push_back(Z(1));
                return;
            }
            dfs1(p << 1, l, m), dfs1(p << 1 | 1, m + 1, r);
            Q[p] = Q[p << 1] * Q[p << 1 | 1];
        };
        dfs1(1, 0, a.size() - 1);
        Poly f;
        f.a.resize((int)(Q[1].size()) - 1);
        for (int i = 0; i + 1 < Q[1].size(); i ++) {
            f[i] = Q[1][i + 1] * (i + 1);
        }
        Poly g = f.eval(a);
        function<void(int, int, int)> dfs2 = [&](int p, int l, int r) {
            int m = l + r >> 1;
            if (l == r) {
                P[p].a.push_back(y[m] * power(g[m], mod - 2));
                return;
            }
            dfs2(p << 1, l, m), dfs2(p << 1 | 1, m + 1, r);
            P[p].a.resize(r - l + 1);
            Poly A = P[p << 1] * Q[p << 1 | 1];
            Poly B = P[p << 1 | 1] * Q[p << 1];
            for (int i = 0; i <= r - l; i ++) {
                P[p][i] = A[i] + B[i];
            }
        };
        dfs2(1, 0, a.size() - 1);
        return P[1];
    }
};
Poly toFPP(vector<Z> &a) {
    int n = a.size();
    vector<Z> b(n);
    iota(b.begin(), b.end(), 0);
    auto F = Poly(a).eval(b);
    vector<Z> f(n), g(n);
    for (int i = 0, sign = 1; i < n; i ++, sign *= -1) {
        f[i] = F[i] * infact[i];
        g[i] = Z(sign) * infact[i];
    }
    return Poly(f) * Poly(g);
}
Poly toOP(vector<Z> &a) {
    int n = a.size();
    vector<Z> g(n);
    for (int i = 0; i < n; i ++) {
        g[i] = infact[i];
    }
    auto F = Poly(a) * Poly(g);
    for (int i = 0; i < n; i ++) {
        F[i] *= fact[i];
    }
    vector<Z> p(n);
    iota(p.begin(), p.end(), 0);
    return Poly(p).inter(F);
}
Poly FPPMul(Poly a, Poly b) {
    int n = a.size() + b.size() - 1;
    Poly p;
    p.resize(n);
    for (int i = 0; i < n; i ++) {
        p[i] = infact[i];
    }
    a *= p, b *= p;
    for (int i = 0; i < n; i ++) {
        a[i] *= b[i] * fact[i];
    }
    for (int i = 1; i < n; i += 2) {
        p[i] = -p[i];
    }
    a *= p;
    a.resize(n);
    return a;
}
Poly Lagrange2(vector<Z> &f, int m, int k) {
    int n = f.size() - 1;
    vector<Z> a(n + 1), b(n + 1 + k);
    for (int i = 0; i <= n; i ++) {
        a[i] = f[i] * ((n - i) & 1 ? -1 : 1) * infact[n - i] * infact[i];
    }
    for (int i = 0; i <= n + k; i ++) {
        b[i] = Z(1) / (m - n + i);
    }
    Poly ans = Poly(a) * Poly(b);
    for (int i = 0; i <= k; i ++) {
        ans[i] = ans[i + n];
    }
    ans.resize(k + 1);
    Z sum = 1;
    for (int i = 0; i <= n; i ++) {
        sum *= m - i;
    }
    for (int i = 0; i <= k; i ++) {
        ans[i] *= sum;
        sum *= Z(m + i + 1) / (m - n + i);
    }
    return ans;
}
Poly S2_row;
void S2_row_init(int n) {
    vector<Z> f(n + 1), g(n + 1);
    for (int i = 0; i <= n; i ++) {
        f[i] = power(Z(i), n) * infact[i];
        g[i] = Z(i & 1 ? -1 : 1) * infact[i];
    }
    S2_row = Poly(f) * Poly(g);
}
Poly S2_col;
void S2_col_init(int n, int k) {
    n ++;
    vector<Z> f(n);
    for (int i = 1; i < n; i ++) {
        f[i] = infact[i];
    }
    auto ans = Poly(f).pow(k, n);
    S2_col.resize(n + 1);
    for (int i = 0; i < n; i ++) {
        S2_col[i] = ans[i] * fact[i] * infact[k];
    }
}
Poly Bell;
void Bell_init(int n) {
    vector<Z> f(n + 1);
    for (int i = 1; i <= n; i ++) {
        f[i] = infact[i];
    }
    auto ans = Poly(f).exp(n + 1);
    Bell.resize(n + 1);
    for (int i = 0; i <= n; i ++) {
        Bell[i] = ans[i] * fact[i];
    }
}
vector<Z> p;
void p_init(int n) {
    vector<int> f(n + 1);
    p.resize(n + 1);
    p[0] = 1;
    f[0] = 1, f[1] = 2, f[2] = 5, f[3] = 7;
    for (int i = 4; f[i - 1] <= n; i ++) {
        f[i] = 3 + 2 * f[i - 2] - f[i - 4];
    }
    for (int i = 1; i <= n; i ++) {
        for (int j = 0; f[j] <= i; j ++) {
            p[i] += Z(j & 2 ? -1 : 1) * p[i - f[j]];
        }
    }
}
Poly P;
void p_init(int n, int m) {
    vector<Z> a(n + 1);
    for (int i = 1; i <= m; i ++) {
        for (int j = i; j <= n; j += i) {
            a[j] += Z(j / i).inv();
        }
    }
    P = Poly(a).exp(n + 1);
}
Z Fact(int n) {
    int t = sqrt(n);
    function<Poly(int, int)> dc = [&](int l, int r) {
        if (l == r) {
            vector<Z> f(2);
            f[0] = l, f[1] = 1;
            return Poly(f);
        }
        int mid = l + r >> 1;
        return dc(l, mid) * dc(mid + 1, r);
    };
    auto f = dc(1, t);
    vector<Z> p;
    int last;
    for (int i = 0; i < n / t; i ++) {
        p.push_back(t * i);
        last = t * i;
    }
    auto ans = f.eval(p);
    Z sum = 1;
    for (int i = 0; i < ans.size(); i ++) {
        sum *= ans[i];
    }
    for (int i = n / t * t + 1; i <= n; i ++) {
        sum *= i;
    }
    return sum;
}
void solve() {
    int n, m, k;
    cin >> n >> m >> k;
    vector<int> cnt(m + 1);
    for (int i = 1; i <= n; i ++) {
        int x;
        cin >> x;
        cnt[x] ++;
    }
    vector<vector<Z>> f;
    for (int i = 1; i <= m; i ++) {
        if (cnt[i]) {
            int sz = cnt[i];
            vector<Z> F(sz + 1);
            F[0] = 1, F[sz] = -1;
            f.push_back(F);
        }
    }
    function<Poly(int, int)> dc = [&](int l, int r) {
        if (l == r) {
            return Poly(f[l]);
        }
        int mid = l + r >> 1;
        return dc(l, mid) * dc(mid + 1, r);
    };
    auto ans = dc(0, f.size() - 1);
    Z res, factk = Fact(k), fk = factk;
    for (int i = 0, tk = k; i <= min(k, (int)ans.size() - 1); i ++, tk -= 1) {
        int t = n - i;
        res += ans[i] * power(Z(t), k - i) / factk;
        factk /= tk;
    }
    cout << fk * res / power(Z(n), k) << "\n";
}
signed main() {
    cin.tie(0) -> sync_with_stdio(0);
    int T;
    cin >> T;
    while (T --) {
        solve();
    }
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
回答: 根据您提供的引用内容,报错信息"无法将“cargo”项识别为 cmdlet、函数、脚本文件或可运行程序的名称"可能是由于环境变量配置不正确导致的。请按照以下步骤进行解决: 1. 首先,确保您已经正确安装了Cargo,并且将其添加到了系统的环境变量中。 2. 检查您的环境变量配置是否正确。您可以通过在命令行中输入"echo %PATH%"来查看当前的环境变量配置。确保路径中包含了Cargo的安装路径。 3. 如果您刚刚修改了环境变量,请记得重新打开您的命令行终端或编辑器,以使更改生效。 如果您仍然遇到相同的问题,请提供更多的上下文信息,以便我能够更好地帮助您解决问题。 #### 引用[.reference_title] - *1* [gcc : 无法将“gcc”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径...](https://blog.csdn.net/littlelittleR/article/details/121438006)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [nodemon : 无法将“nodemon”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果...](https://blog.csdn.net/qq_45796515/article/details/126696269)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值