本文将介绍整个量化交易系统中的一些基本概念。本文服务于两类读者:第一类想在量化基金找到量化交易员工作的人,第二类是希望尝试和建立自己的零售算法交易业务的个人。
量化交易是量化金融中一个非常复杂的领域。为了通过面试或者构建自己的交易策略 ,你可能需要花费大量的时间来获得必要的知识。不仅如此,量化交易也需要你掌握大量的编程专业知识,至少应掌握一门程序语言,如MATLAB,R或Python。然而,随着交易策略频率的不断增长,编程技术的重要性也日益提升,因此熟悉C/C++也同样至关重要。
量化交易系统由四个主要部分组成:
- 策略识别:寻找策略,挖掘竞争优势并确定交易的频率;
- 策略回测:获取数据,分析策略的性能和消除各种偏差;
- 执行系统:将交易系统经纪商连接起来,自动交易以及最小化交易成本;
- 风险管理:最优资本配置,最优下注规模、凯利标准和交易心理学。
首先介绍如何识别交易策略:
策略识别
所有的量化交易过程都始于最初的研究阶段。这一研究阶段包括寻找策略,观察该策略是否与你可能正在运行的其他策略组合相契合,获得测试策略所需的全部数据,并尝试优化策略以获得更高的回报以及降低风险。如果你是一个零售交易员,你还需要考虑自己的资本约束,以及任何可能影响你的策略的交易成本因素。
与流行的看法相反,实际上你可以相当直接地通过各种公共资料来源找到有利可图的策略。学术界通常会定期发布一些理论性策略的交易成果(尽管大多数未考虑交易成本)。量化金融博客会详细地讨论策略的细节,而与交易相关的杂志则会涉及量化基金使用的一些策略。
你可能会感到疑惑,为什么个人和公司会热衷于讨论他们的盈利策略,特别是当他们知道别人都使用该策略,可能会使得策略在长期里失去效力。他们这么做的原因在于,通常他们并不会讨论策略的确切参数和识别参数的方法,而这些优化才是使得相对平庸的策略转变为盈利丰厚的策略的关键。事实上,创建自己独特策略的最好方法之一便是找到类似的方法,然后执行自己的优化过程。
下面列出了一些网站与博客,你可以从他们这里开始寻找自已的交易策略: