向AI转型的程序员都关注了这个号???
大数据挖掘DT数据分析 公众号: datadw
本文代码、及测试图片在公众号 datadw 里 回复 图片分类 即可获取。
网上看的很多教程都是几个常见的例子,从内置模块或在线download数据集,要么是iris,要么是MNIST手写识别数字,或是UCI ,数据集不需要自己准备,所以不关心如何读取数据、做数据预处理相关的内容,但是实际做项目的时候做数据预处理感觉一头雾水。
本文从图片下载,到生成数据集列表,建立模型,最后到预测,将整个图片分类的实操流程详细讲解。 代码基于百度开源的深度学习框架 paddlepaddle,该框架安装及其简单:
pip install paddlepaddle
mac版 安装后使用如果报错:
1 Fatal Python error: PyThreadState_Get: no current thread
2 Abort trap: 6
解决方案:
1.运行otool,可以看到pip安装之后的_swig_paddle.so依赖/usr/local/opt/python/Frameworks/Python.framework/Versions/2.7/Python,但实际系统中不存在该路径
1 otool -L /anaconda/lib/python2.7/site-packages/py_paddle/_swig_paddle.so
2 /anaconda/lib/python2.7/site-packages/py_paddle/_swig_paddle.so:
3 /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 150.0.0, current version 1445.12.0)
4 /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 1.0.0, current version 58286.20.16)
5 /usr/local/opt/python/Frameworks/Python.framework/Versions/2.7/Python (compatibility version 2.7.0, current version 2.7.0)
6 /usr/lib/libc++.1.dylib (compatibility version 1.0.0, current version 400.9.0)
7 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1252.0.0)
2.利用install_name_tool来替换依赖
1 install_name_tool -change /usr/local/opt/python/Frameworks/Python.framework/Versions/2.7/Python ~/anaconda/lib/libpython2.7.dylib ~/anaconda/lib/python2.7/site-packages/py_paddle/_swig_paddle.so
标颜色的地方要根据自己电脑修改
3.替换成功后,可以看到第五条已经成功的换成anaconda下的路径了
1 otool -L /anaconda/lib/python2.7/site-packages/py_paddle/_swig_paddle.so
2 /anaconda/lib/python2.7/site-packages/py_paddle/_swig_paddle.so:
3 /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 150.0.0, current version 1445.12.0)
4 /System/Library/Frameworks/Security.framework/Versions/A/Security (compatibility version 1.0.0, current version 58286.20.16)
5 /anaconda/lib/libpython2.7.dylib (compatibility version 2.7.0, current version 2.7.0)
6 /usr/lib/libc++.1.dylib (compatibility version 1.0.0, current version 400.9.0)
7 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1252.0.0)
现在再运行paddle.init就不会有问题了
下载图片的代码
这个程序可以从百度图片中下载图片,可以多个类别一起下载,还可以指定下载数量
本文代码、及测试图片在公众号 datadw 里 回复 图片分类 即可获取。
# -*- coding:utf-8 -*-
import re
import uuid
import requests
import os
class DownloadImages:
def __init__(self,download_max,key_word):
self.download_sum = 0
self.download_max = download_max
self.key_word = key_word
self.save_path = '../images/download/' + key_word
def start_download(self):
self.download_sum = 0
gsm = 80
str_gsm = str(gsm)
pn = 0
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
while self.download_sum < self.download_max:
str_pn = str(self.download_sum)
url = 'http://image.baidu.com/search/flip?tn=baiduimage&ie=utf-8&' \
'word=' + self.key_word + '&pn=' + str_pn + '&gsm=' + str_gsm + '&ct=&ic=0&lm=-1&width=0&height=0'
print url
result = requests.get(url)
self.downloadImages(result.text)
print '下载完成'
def downloadImages(self,html):
img_urls = re.findall('"objURL":"(.*?)",', html, re.S)
print '找到关键词:' + self.key_word + '的图片,现在开始下载图片...'
for img_url in img_urls:
print '正在下载第' + str(self.download_sum + 1) + '张图片,图片地址:' + str(img_url)
try:
pic = requests.get(img_url, timeout=50)
pic_name = self.save_path + '/' + str(uuid.uuid1()) + '.jpg'
with open(pic_name, 'wb') as f:
f.write(pic.content)
self.download_sum += 1
if self.download_sum >= self.download_max:
break
except Exception, e:
print '【错误】当前图片无法下载,%s' % e
continue
if __name__ == '__main__':
key_word_max = input('请输入你要下载几个类别:')
key_words = []
for sum in range(key_word_max):
key_words.append(raw_input('请输入第%s个关键字:' % str(sum+1)))
max_sum = input('请输入每个类别下载的数量:')
for key_word in key_words:
downloadImages = DownloadImages(max_sum, key_word)
downloadImages.start_download()
数据集介绍
如果我们要训练自己的数据集的话,就需要先建立图像列表文件,下面的代码是Myreader.py
读取图像数据集的一部分,从这些代码中可以看出,图像列表中,图像的路径和标签是以\t
来分割的,所以我们在生成这个列表的时候,使用\t
就可以了.
def train_reader(self,train_list, buffered_size=1024):
def reader():
with open(train_list, 'r') as f:
lines = [line.strip() for line in f]
for line in lines:
img_path, lab = line.strip().split('\t')
yield img_path, int(lab)
生成的图像列表的结构是这样的:
../images/vegetables/lotus_root/1515827057517.jpg 2
../images/vegetables/lotus_root/1515827057582.jpg 2
../images/vegetables/lotus_root/1515827057616.jpg 2
../images/vegetables/lettuce/1515827015922.jpg 1
../images/vegetables/lettuce/1515827015983.jpg 1
../images/vegetables/lettuce/1515827016045.jpg 1
../images/vegetables/cuke/1515827008337.jpg 0
../images/vegetables/cuke/1515827008370.jpg 0
../images/vegetables/cuke/1515827008402.jpg 0
生成图像列表
所以我们要编写一个程序可以为我们生成这样的图像列表
在这个程序中,我们只要把一个大类的文件夹路径传进去就可以了,该程序会把里面的每个小类别都迭代,生成固定格式的列表.比如我们把蔬菜类别的根目录传进去../images/vegetables
本文代码、及测试图片在公众号 datadw 里 回复 图片分类 即可获取。
运行这个程序之后,会生成在data文件夹中生成一个单独的大类文件夹,比如我们这次是使用到蔬菜类,所以我生成一个vegetables文件夹,在这个文件夹下有3个文件:
文件名 | 作用 |
---|---|
trainer.list | 用于训练的图像列表 |
test.list | 用于测试的图像列表 |
readme.json | 该数据集的json格式的说明,方便以后使用 |
readme.json
文件的格式如下,可以很清楚看到整个数据的图像数量,总类别名称和类别数量,还有每个类对应的标签,类别的名字,该类别的测试数据和训练数据的数量:
{
"all_class_images": 3300,
"all_class_name": "vegetables",
"all_class_sum": 3,
"class_detail": [
{
"class_label": 1,
"class_name": "cuke",
"class_test_images": 110,
"class_trainer_images": 990
},
{
"class_label": 2,
"class_name": "lettuce",
"class_test_images": 110,
"class_trainer_images": 990
},
{
"class_label": 3,
"class_name": "lotus_root",
"class_test_images": 110,
"class_trainer_images": 990
}
]}
读取数据
通过这个程序可以将上一部分的图像列表读取,生成训练和测试使用的reader,在生成reader前,要传入一个图像的大小,PaddlePaddle会帮我们按照这个大小随机裁剪一个方形的图像,这是种随机裁剪也是数据增强的一种方式.
使用PaddlePaddle开始训练
导入依赖包
首先要先导入依赖包,其中有PaddlePaddle的V2包和上面定义的Myreader.py
读取数据的程序
# coding:utf-8
import sys
import os
import numpy as np
import paddle.v2 as paddle
from MyReader import MyReader
初始化Paddle
然后我们创建一个类,再在类中创建一个初始化函数,在初始化函数中来初始化我们的PaddlePaddle
class PaddleUtil:
# ***********************初始化操作*********************
def __init__(self):
# 初始化paddpaddle,只是用CPU,把GPU关闭
paddle.init(use_gpu=False, trainer_count=2)
定义神经网络模型
这里使用的是VGG神经网络,跟上一篇文章用到的VGG又有一点不同,这里可以看到conv_with_batchnorm=False
,我是把BN
关闭了,在这里不使用BN
层,笔者也不知道为什么如果加上BN
层之后就办法正常训练了,根本就没办法正常收敛。
创建分类器
通过数据输入数据的大小和上面获得的神经模型,使用Softmax输出全连接,得到分类器
获取参数
该函数可以通过输入是否是参数文件路径,或者是损失函数,如果是参数文件路径,就使用之前训练好的参数生产参数.如果不传入参数文件路径,那就使用传入的损失函数生成参数
创建训练器
创建训练器要3个参数,分别是损失函数,参数,优化方法.通过图像的标签信息和分类器生成损失函数.参数可以选择是使用之前训练好的参数,然后在此基础上再进行训练,又或者是使用损失函数生成初始化参数.然后再生成优化方法.就可以创建一个训练器了.
开始训练
要启动训练要4个参数,分别是训练数据,训练的轮数,训练过程中的事件处理,输入数据和标签的对应关系.
训练数据:这次的训练数据是我们自定义的数据集.
训练轮数:表示我们要训练多少轮,次数越多准确率越高,最终会稳定在一个固定的准确率上.不得不说的是这个会比MNIST数据集的速度慢很多
事件处理:训练过程中的一些事件处理,比如会在每个batch打印一次日志,在每个pass之后保存一下参数和测试一下测试数据集的预测准确率.
输入数据和标签的对应关系:说明输入数据是第0维度,标签是第1维度
然后在main
中调用相应的函数,开始训练,可以看到通过myReader.train_reader
来生成一个reader
输出日志如下:’
Pass 0, Batch 0, Cost 1.162887, Error 0.6171875
.....................
Test with Pass 0, Classification_Error 0.353333324194
使用PaddlePaddle预测
该函数需要输入3个参数,
第一个是需要预测的图像,图像传入之后,会经过load_image函数处理,大小会变成32*32大小,训练是输入数据的大小一样.
第二个就是训练好的参数
第三个是通过神经模型生成的分类器
然后在main
中调用相应的函数,开始预测,这个可以同时传入多个数据,可以同时预测
本文代码、及测试图片在公众号 datadw 里 回复 图片分类 即可获取。
输出的结果是:
预测结果为:0,可信度为:0.699004
预测结果为:0,可信度为:0.546674
预测结果为:2,可信度为:0.756389
via http://blog.csdn.net/qq_33200967/article/details/79095265?%3E
人工智能大数据与深度学习
搜索添加微信公众号:weic2c
长按图片,识别二维码,点关注
大数据挖掘DT数据分析
搜索添加微信公众号:datadw
教你机器学习,教你数据挖掘
长按图片,识别二维码,点关注