torch_geometric

本文深入探讨了torch_geometric库中的DenseSAGEConv层,该层在图神经网络中用于处理批处理数据。DenseSAGEConv适用于二值权重矩阵,其forward函数接收节点特征和邻接矩阵作为输入。文章还解析了归一化操作,用于规范化输入特征,并介绍了SAGEConv的参数和源码细节。最后提到了typing.py的作用,但未详细阐述。
摘要由CSDN通过智能技术生成

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.SAGEConv

1.torch_geometric.utils



1.1

在这里插入图片描述

1.2 to_dense_batch

在这里插入图片描述

这里的to_dense_batch 不是把X变得更稀疏了吗?
X ∈ R B × N max ⁡ × F \mathbf{X} \in \mathbb{R}^{B \times N_{\max} \times F} XRB×Nmax×F第一维度不是比 X ∈ R ( N 1 + … + N B ) × F \mathbf{X} \in \mathbb{R}^{(N_1 + \ldots + N_B) \times F} XR(N1++NB)×F更大了




   

2.torch_geometric.nn

2.1 DenseSAGEConv

只适用于二值权重(0、1)矩阵,如果带权重的话要使用 torch_geometric.nn.dense.DenseGraphConv

class DenseSAGEConv(in_channels, out_channels, normalize=False, bias=True)

The adjacency tensor is broadcastable in the batch dimension, resulting in a shared adjacency matrix for the complete batch.

forward(x, adj, mask=None)

forward中的Args:

  1. x x x (Tensor) -节点特征tensor
    X ∈ R B × N × F \mathbf{X} \in \mathbb{R}^{B \times N \times F} XRB×N×F
    batch-size B B B,
    (maximum) number of nodes N N Nfor each graph,
    feature dimension F F F.

  2. a d j adj adj (Tensor): Adjacency tensor : A ∈ R B × N × N \mathbf{A} \in \mathbb{R}^{B \times N \times N} ARB×N×N. The adjacency tensor is broadcastable in
    the batch dimension, resulting in a shared adjacency matrix for
    the complete batch.
    可以在整个batch中共享??

  3. mask (BoolTensor, optional): Mask matrix

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值