LGB + K-fold Cross Validation 用法小记

这篇博客主要记录了在实际应用中如何结合LightGBM(LGB)库与K折交叉验证(K-fold Cross Validation)进行有效的模型训练和验证,旨在提供一种代码实现的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到好的代码,就记录下来,方便以后使用

# 引入相关包
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import StratifiedKFold

# 假设这里准备好了训练数据train_data,它是一个pandas的dataframe,包括特征列和score列
train_label = train_data['score']

# 初始化一个k-fold生成器
NFOLDS = 5
kfold = StratifiedKFold(n_splits=NFOLDS, shuffle=True, random_state=2019)
kf = kfold.split(train_data, train_label)
cv_pred = np.zeros(test_data.shape[0])
valid_best_l2_all = 0
feature_importance_df = pd.DataFrame()

# 执行训练
for i, (train_fold
### 解释公式 \(-174 + NF + 10 * \log_{10}(B) + 10 * \log_{10}(\text{SNR})\) 该公式的目的是计算接收机灵敏度,即最小可检测信号电平。下面逐项解析各个组成部分: #### 噪声底限 (-174 dBm/Hz) 噪声底限通常指热噪声密度,在室温下约为 -174 dBm/Hz。这是任何通信系统不可避免的基础噪声水平。 #### 噪声系数 (NF) 噪声系数 \(NF\) 表征的是设备引入额外噪声的程度。对于理想无噪声放大器而言,\(NF = 0\);实际应用中的放大器会有一定的正值噪声系数[^1]。 #### 带宽影响 (\(10 * \log_{10}(B)\)) 带宽 \(B\) 影响着总的噪声功率。随着带宽增加,总噪声也相应增大。通过取对数转换成分贝单位后加到整体表达式里去考虑整个系统的宽带特性。 #### 信噪比贡献 (\(10 * \log_{10}(\text{SNR})\)) 信噪比(Signal-Noise Ratio, SNR)衡量有用信号相对于背景噪声的比例关系。高信噪比意味着更好的信号质量。同样地,这里也将其转化为分贝形式加入最终结果之中。 综合上述各项因素,此公式用于评估无线通信系统能够可靠接收到最低限度的有效信号强度。具体来说就是当输入端存在给定的噪声环境时,为了维持特定性能指标所需的最小平均接收功率电平。 ```python import math def calculate_sensitivity(NF, B, SNR): """ 计算接收机灵敏度 参数: NF : float 噪声系数(dB) B : float 接收带宽(Hz) SNR : float 所需信噪比(dB) 返回: sensitivity : float 灵敏度(dBm) """ thermal_noise_density_dbm_hz = -174 # 室温下的热噪声密度 sensitivity = ( thermal_noise_density_dbm_hz + NF + 10 * math.log10(B) + 10 * math.log10(SNR) ) return sensitivity ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值