[ZJOI2007]棋盘制作
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形纸片的颜色(0表示白色,1表示黑色)。
输出格式:包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
3 3 1 0 1 0 1 0 1 0 0
4 6
说明
对于20%的数据,N, M ≤ 80
对于40%的数据,N, M ≤ 400
对于100%的数据,N, M ≤ 2000
看了题目之后没什么好的思路,写了个n三方的暴力,结果洛谷太水了,居然过了,代码:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN (2000+5)
#define INF 0x3f3f3f3f
#define For(i, a, b) for(int i = (a); i <= (int)(b); i++)
#define Forr(i, a, b) for(int i = (a); i >= (int)(b); i--)
int goL[MAXN][MAXN], goU[MAXN][MAXN];
bool chess[MAXN][MAXN];
int main(){
int n, m;
scanf("%d%d", &n, &m);
For(i, 1, n) For(j, 1, m){
scanf("%d", &chess[i][j]);
if(j==1 || chess[i][j]==chess[i][j-1]) goL[i][j] = 1;
else goL[i][j] = goL[i][j-1]+1;
}
For(j, 1, m) For(i, 1, n)
if(i==1 || chess[i][j]==chess[i-1][j]) goU[i][j] = 1;
else goU[i][j] = goU[i-1][j]+1;
int ans1 = 1, ans2 = 1;
For(i, 1, n) For(j, 1, m){
if(i == 1 && j == 1) continue;
int minh = INF, mL = j-goL[i][j]+1, cnt = 0;
Forr(k, j, mL){
minh = min(minh, goU[i][k]); cnt++;
ans2 = max(ans2, cnt*minh);
ans1 = max(ans1, min(cnt, minh));
}
}
printf("%d\n%d\n", ans1*ans1, ans2);
return 0;
}
啊啊啊好暴力吧,于是我亏心了,就看了一下题解,我发现。。。好巧妙啊--
对于每一个点(i, j)记录它最多可以往上面走多少,以及在保证上面的行满足条件的情况下,左右最多的延伸值。然后计入答案即可。。。为什么是对的呢,其实想一想,最优解一定可以在某个位置被记录(不行可以画一个图)
标程如下(膜拜一下):
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=2000+5;
int ans_s(0),ans_l(0),M,N,cur;
int l[maxn],r[maxn],h[maxn],a[maxn],x,s;
int read()
{
char ch=getchar();
int ret=(0);
while(ch<'0'||'9'<ch) ch=getchar();
for(;'0'<=ch&&ch<='9';ch=getchar()) ret=ret*10+ch-'0';
return ret;
}
int main()
{
memset(a,-1,sizeof(a));
memset(h,0,sizeof(h));
N = read();M = read();
for(int i=1; i<=M; i++) l[i] = 1,r[i] = M;
for(int i=1,j; i<=N; i++)
{
cur = 1;
for(j=1; j<=M; j++)
{
x=read();
h[j] = x+a[j]==1? h[j]+1 : 1;
l[j] = x+a[j]==1? l[j] : 1;
r[j] = x+a[j]==1? r[j] : M;
cur = x+a[j-1]==1? cur : j;
l[j] = max(l[j],cur);
a[j] = x;
}
cur=M;
for(j=M;j>=0;j--)
{
cur = a[j]+a[j+1]==1? cur : j;
r[j] = min(r[j],cur);
ans_s = max( (r[j]-l[j]+1)*h[j] , ans_s );
ans_l = max( min(r[j]-l[j]+1,h[j]) , ans_l );
}
}
printf("%d\n%d",ans_l*ans_l,ans_s);
return 0;
}