Spark上提交运行简单WordCount程序---Spark学习笔记(1)

本文介绍了如何在IDE中使用Spark API编写Scala的WordCount程序,并通过spark-submit进行提交运行。详细解释了Spark的RDD原理,以及spark-submit的参数设置,如--class、--master选项。提到了Spark运行模式的选择,如local、spark://HOST:PORT、mesos和yarn,并分享了学习Spark过程中的经验与资源。
摘要由CSDN通过智能技术生成

其实这个时候应该继续学习hadoop的,但是猛然发现目前的需求是spark,不过spark可以基于hadoop运行。
目前使用的spark版本是:spark-1.6.2-bin-hadoop2.6
运行Spark简单程序的思路是现在IDE上导入spark API包并写好scala程序,然后像写Hadoop MapReduce程序一样,导出做成jar包,接下来用spark-submit提交jar包,就可以运行了。

  1. WordCount程序
    结合官网上的示例,我们先分析一下WordCount程序:
object SparkWordCount {
    //设置输入文件位置,spark读取文件是在SPARK_HOME 下读取的
    val filePath="test.text"     
    //设置spark配置信息
    val conf=new SparkConf().setAppName("WordCount")
    val sparkContext=new SparkContext(conf)
    //sparkContext返回一个RDD[String],cache()过程是将这个返回的RDD缓存下来
    val 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值