目录
一、引言
1.1 研究背景与意义
肺栓塞是一种严重的心血管疾病,主要是由于内源性或外源性栓子堵塞肺动脉或其分支,进而引发肺循环和呼吸功能障碍。其发病隐匿,症状表现多样,从轻微的呼吸困难到严重的呼吸衰竭甚至猝死,给患者的生命健康带来了极大威胁。据相关统计数据显示,肺栓塞在全球范围内的发病率呈上升趋势,在我国也已成为常见的心血管疾病之一 ,严重影响患者的生活质量和预后。
目前,肺栓塞的诊疗过程存在诸多难点。在诊断方面,其症状缺乏特异性,容易与其他心肺疾病混淆,导致误诊和漏诊情况时有发生。常用的诊断方法如血浆 D - 二聚体检测、动脉血气分析、心电图、超声等筛查手段虽有一定价值,但确诊仍依赖于 CT 肺动脉造影、肺通气灌注显像、肺动脉造影等复杂且具有一定风险的检查,这些检查不仅费用较高,还可能给患者带来不适和潜在的并发症风险 。在治疗上,不同类型和严重程度的肺栓塞需要采取个体化的治疗方案,包括抗凝、溶栓、介入治疗和手术治疗等,但如何准确评估患者的病情严重程度和治疗反应,从而选择最佳的治疗策略,仍然是临床面临的挑战。
随着人工智能技术的飞速发展,大模型在医疗领域的应用展现出巨大潜力。大模型具有强大的数据处理和分析能力,能够整合多源数据,包括患者的临床症状、病史、检查检验结果等,挖掘其中潜在的规律和关联,从而实现对肺栓塞的精准预测。利用大模型预测肺栓塞,有助于在疾病发生前识别高危人群,提前采取预防措施;在术前准确评估手术风险,制定个性化的手术和麻醉方案;在术中实时监测,及时发现并处理可能出现的并发症;在术后预测恢复情况,优化护理和康复方案。这对于提高肺栓塞的诊疗水平,降低误诊率和漏诊率,改善患者的预后,具有重要的现实意义,也将为心血管疾病的智能化诊疗提供新的思路和方法。
1.2 研究目的与创新点
本研究旨在利用大模型构建全面、精准的肺栓塞预测体系,涵盖术前、术中、术后各个阶段,以及并发症风险预测,为临床制定科学合理的手术方案、麻醉方案、术后护理计划等提供有力支持。具体目的包括:通过分析大量临床数据,训练大模型对患者发生肺栓塞的风险进行准确预测,特别是针对具有高危因素的人群;基于大模型预测结果,制定个性化的手术方案,优化手术流程,降低手术相关的肺栓塞风险;为麻醉方案的选择提供参考,确保麻醉过程平稳,减少对患者心肺功能的影响;预测术后肺栓塞发生的可能性以及其他并发症风险,指导术后护理工作,促进患者快速康复;通过统计分析验证大模型预测的准确性和可靠性,评估预测模型在临床实践中的应用价值。
本研究的创新点主要体现在以下几个方面:一是多阶段、全方位的预测体系构建,将大模型应用于肺栓塞诊疗的全过程,突破了以往单一阶段或单一指标预测的局限性;二是数据融合与深度挖掘,整合多种类型的临床数据,运用大模型的深度学习算法,挖掘数据间复杂的非线性关系,提高预测的准确性和全面性;三是个性化诊疗方案制定,根据大模型的预测结果,为每个患者量身定制手术、麻醉和术后护理方案,实现精准医疗,提高治疗效果和患者满意度 ;四是跨学科合作研究,结合医学、计算机科学、统计学等多学科知识和技术,为肺栓塞的智能化诊疗提供综合性的解决方案,推动学科交叉融合发展。
二、肺栓塞概述
2.1 定义与病理生理
肺栓塞是一种以各种栓子阻塞肺动脉或其分支为发病原因的一组疾病或临床综合征的总称,其中肺血栓栓塞症最为常见 。其病理生理过程较为复杂,当栓子阻塞肺动脉及其分支后,首先会导致机械性的肺循环障碍,使得肺血管阻力增加,肺动脉压力升高。这是因为栓子直接堵塞了肺动脉血管,减少了肺血管床的有效横截面积,阻碍了血液的正常流通。随着肺动脉压力的升高,右心室需要克服更大的阻力将血液泵入肺动脉,右心室后负荷增加,导致右心室壁张力增高,进而引起右心室扩大。若右心负荷持续严重增加,可引发右心衰竭,导致心输出量下降,血压降低 。
除了机械性阻塞外,神经 - 体液因素在肺栓塞的病理生理过程中也起着重要作用。肺栓塞发生后,肺血管内皮受损,会释放大量的收缩性物质,如内皮素、血管紧张素 Ⅱ 等,这些物质可使肺血管进一步收缩,加剧肺动脉高压。同时,血栓中的血小板活化脱颗粒,会释放出大量的血管活性物质,如 α - 磷酸腺苷、组织胺、5 - 羟色胺、多种前列腺素等,它们也能广泛引起肺小动脉收缩,进一步增加肺血管阻力 。此外,肺栓塞还会导致气体交换障碍。由于栓塞部位肺血流减少,肺泡无效腔量增大,肺内血流重新分布,使得通气血流比例失调。右心房压升高可引起未闭合的卵圆孔开放,产生心内右向左分流 。神经 - 体液因素还会引起支气管痉挛,栓塞部位肺泡表面活性物质分泌减少,导致肺泡萎陷,呼吸面积减小,肺顺应性下降,肺体积缩小并可出现肺不张,进一步加重气体交换障碍,导致低氧血症和二氧化碳潴留。
2.2 病因与危险因素
肺栓塞的病因主要与血栓形成和栓子脱落有关,其中深静脉血栓是最常见的血栓来源 。深静脉血栓通常发生在下肢深静脉,特别是从腘静脉上端到髂静脉段的下肢近端深静脉,约占血栓来源的 50% - 90%。当深静脉血栓形成后,部分血栓可能会脱落,随血流进入肺动脉及其分支,从而导致肺栓塞。除了深静脉血栓,其他栓子如脂肪栓子、羊水栓子、空气栓子等也可引起肺栓塞,但相对较为少见 。例如,在长骨骨折时,骨髓中的脂肪滴可能会进入血液循环,形成脂肪栓子,导致肺脂肪栓塞;在分娩过程中,羊水可能会进入母体血液循环,引发羊水栓塞;在进行某些医疗操作,如中心静脉置管、胸腔穿刺等时,若操作不当,空气可能会进入血管,形成空气栓子,导致空气栓塞 。
肺栓塞的危险因素众多,可分为遗传性因素和获得性因素。遗传性因素主要与基因变异有关,某些基因变异可导致患者体内凝血、抗凝等相关机制异常,使血液处于高凝状态,增加血栓形成的风险 。获得性因素则更为常见,包括年龄、肥胖、手术、创伤、长期卧床、恶性肿瘤、妊娠和产褥期、口服避孕药等 。老年人由于血管弹性下降、血流缓慢等原因,发生肺栓塞的风险较高;肥胖者体内脂肪堆积,血液黏稠度增加,易形成血栓;手术和创伤会导致血管内皮损伤,激活凝血系统,促使血栓形成,尤其是大型手术、骨科手术、妇产科手术等,术后肺栓塞的发生率相对较高;长期卧床或久坐不动会使静脉血液瘀滞,增加血栓形成的机会;恶性肿瘤患者体内存在多种促凝物质,且肿瘤细胞可能会直接侵犯血管,导致血管内皮损伤,引发血栓;妊娠和产褥期女性体内激素水平变化,血液处于高凝状态,同时增大的子宫会压迫下腔静脉,导致静脉血流不畅,容易发生肺栓塞;口服避孕药中的某些成分也会影响凝血功能,增加血栓形成的风险 。
2.3 诊断方法
肺栓塞的诊断需要综合考虑患者的临床症状、体征以及各种辅助检查结果 。其临床症状缺乏特异性,常见的症状包括呼吸困难、胸痛、咯血、咳嗽、心悸、晕厥等 。呼吸困难是肺栓塞最常见的症状,可表现为突然发作的呼吸急促、气短,活动后加重;胸痛多为胸膜炎性胸痛,疼痛性质尖锐,与呼吸运动有关,也可表现为心绞痛样胸痛;咯血通常为少量咯血,大咯血较为少见;咳嗽多为干咳,少数患者可伴有咳痰;心悸、晕厥等症状则可能与肺栓塞导致的血流动力学改变和心功能不全有关 。在体征方面,患者可能出现呼吸急促、心率加快、血压下降、发绀、肺部啰音、肺动脉瓣区第二心音亢进、三尖瓣区收缩期杂音等 。
在辅助检查方面,常用的筛查手段包括血浆 D - 二聚体检测、动脉血气分析、心电图和超声等 。血浆 D - 二聚体是交联纤维蛋白在纤溶系统作用下产生的可溶性降解产物,血栓形成时因血栓纤维蛋白溶解导致 D - 二聚体浓度升高 。其对急性肺栓塞的诊断敏感度较高,在 92% - 100% 之间,但特异度较低 。若 D - 二聚体含量<500μg/L,可基本排除急性肺栓塞 。动脉血气分析常表现为低氧血症、低碳酸血症和肺泡 - 动脉氧分压差增大,但约 40% 的肺栓塞患者动脉血氧饱和度可正常 。心电图常见的改变为 V1 - V4 的 T 波改变和 ST 段异常,也可出现 SⅠQⅢTⅢ 征、肺性 P 波、右束支传导阻滞等,但这些改变均无特异性 。超声心动图对于血流动力学不稳定的肺栓塞患者具有重要的诊断与排除诊断价值,可观察到右心室后负荷过大的征象,如右室扩大、右心室游离壁运动减低、室间隔平直、三尖瓣反流速度增快、三尖瓣收缩期位移降低等 。
而确诊肺栓塞主要依赖于 CT 肺动脉造影(CTPA)、核素肺通气 / 灌注(V/Q)显像、磁共振肺动脉造影(MRPA)和肺动脉造影等检查 。CTPA 是目前诊断肺栓塞的首选方法,它可以直观地显示肺动脉内血栓的形态、部位及血管堵塞程度,对肺栓塞的诊断具有较高的敏感性和特异性 。核素肺通气 / 灌注显像的典型征象是呈肺段分布的肺灌注缺损,并与通气显像不匹配,对于诊断亚段及以下的肺栓塞具有重要价值 。MRPA 可以直接显示肺动脉内的栓子和肺栓塞导致的低灌注区,但对肺段以下水平的肺栓塞诊断价值有限 。肺动脉造影是诊断肺栓塞的 “金标准”,敏感度约为 98%,特异度为 95% - 98%,但其为有创检查,存在一定的风险和并发症,临床上一般不作为首选 。
三、大模型预测肺栓塞的原理与方法
3.1 模型选择与架构
本研究选用深度学习领域中的多层感知机(MLP)作为基础模型架构,并结合长短期记忆网络(LSTM)构建混合模型来实现对肺栓塞的预测。多层感知机是一种前馈神经网络,由输入层、多个隐藏层和输出层组成,各层之间通过权重矩阵进行连接。其强大的非线性映射能力能够对复杂的数据模式进行学习和建模 ,在处理具有复杂特征关系的医疗数据时,能够自动提取数据中的关键特征,从而为肺栓塞的预测提供有力支持 。
长短期记忆网络则是一种特殊的循环神经网络(RNN),专门设计用于处理时间序列数据,有效解决了传统 RNN 在处理长序列时出现的梯度消失和梯度爆炸问题 。在肺栓塞预测中,患者的临床数据往往具有时间序列特征,如生命体征的变化、检查指标随时间的波动等,LSTM 能够很好地捕捉这些时间序列信息,挖掘数据在时间维度上的潜在规律和趋势 。例如,通过学习患者术前一段时间内的心率、血压、血氧饱和度等生命体征的变化情况,以及各项检查指标的动态变化,LSTM 可以更好地预测患者在手术过程中及术后发生肺栓塞的风险 。
将 MLP 与 LSTM 相结合,充分发挥两者的优势。MLP 负责对输入数据的特征进行深度挖掘和非线性变换,提取数据中的静态特征;LSTM 则专注于处理时间序列信息,捕捉数据的动态变化 。这种混合模型架构能够更全面、准确地对肺栓塞相关数据进行建模,提高预测的准确性和可靠性 。
3.2 数据收集与预处理
数据收集主要通过以下几种途径:一是从医院的电子病历系统中获取患者的临床资料,包括患者的基本信息(如年龄、性别、身高、体重等)、既往病史(如高血压、糖尿病、心脏病、深静脉血栓形成史等)、手术史(手术类型、手术时间、术中情况等) ;二是收集患者的实验室检查结果,如血常规、凝血功能指标(包括 D - 二聚体、纤维蛋白原、凝血酶原时间等)、血气分析指标等;三是获取患者的影像学检查数据,如胸部 CT、超声心动图、下肢静脉超声等图像信息,以及这些检查报告中的描述性内容和关键测量数据 。此外,还收集患者在住院期间的生命体征监测数据,如心率、血压、呼吸频率、血氧饱和度等,这些数据按时间顺序记录,形成时间序列数据 。
数据预处理是确保模型训练质量的关键步骤。首先进行数据清洗,去除重复、错误和不完整的数据记录 。例如,对于电子病历中存在的重复录入或录入错误的信息,如患者基本信息的错误填写、检查结果的异常值等,通过与原始检查报告核对或结合临床经验进行修正或删除 。对于缺失值处理,采用多种方法进行填补。对于数值型数据,如实验室检查指标、生命体征数据等,若缺失值较少,可使用均值、中位数或基于机器学习算法(如 K 近邻算法)进行填补;若缺失值较多且该变量对模型影响较大,则考虑删除该变量或采用多重插补法进行处理 。对于分类变量,如手术类型、疾病诊断等,若存在缺失值,可根据其他相关信息或临床经验进行合理推测和填补 。
数据标准化也是重要的预处理环节。对数值型数据进行标准化处理,使其具有相同的量纲和分布特征,常用的方法有 Z - score 标准化、Min - Max 标准化等 。Z - score 标准化通过将数据转换为均值为 0、标准差为 1 的标准正态分布,能够消除不同变量之间的量纲差异,使模型更容易收敛和学习 。Min - Max 标准化则是将数据映射到 [0, 1] 区间,能够保留数据的原始分布特征,对于一些对数据范围敏感的模型算法较为适用 。例如,对于患者的年龄、血压等数据,经过标准化处理后,能够更好地参与模型训练,提高模型的性能 。