Python实现多元回归实战——商品销售

这篇博客通过分析'Advertising.csv'数据集,详细介绍了如何使用Python进行多元回归实战,以预测商品销售情况。
摘要由CSDN通过智能技术生成

 备注:'Advertising.csv'是一个包含200行的商品信息数据(下载地址:在我的资源页面https://download.csdn.net/download/mico_cmm/10952846)。

下面使用该数据进行多元回归分析。

# 多元回归分析
# 加载数据
import pandas as pd
data=pd.read_csv('Advertising.csv')
data.head() # 显示前五行
# print(data)

# 数据特征分析
import matplotlib.pyplot as plt
fig,axes=plt.subplots(1,3,figsize=(9,3))
for n in range(3):
    axes[n].scatter(data.ix[:,n+1],data.ix[:,4])

feature_cols=['TV','Radio','Newspaper']
X=data[feature_cols]
print(X.head()) # 打印前五行数据
print(type(X)) # X的数据类型
print(X.shape) # X的行数、列数

y=data['Sales']
print(y.head())

# 使用交叉验证
from sklearn.model_selection import train_test_split 
# sklearn.cross_validation是sklearn老版本的模块,新版本都迁移到了sklearn.model_selection

X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=1)
print(X_train.shape)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值