从零深度学习环境配置

写作本文的主要目的是为了给分析组的台式机配置安装提供指导,同时也是一个通用的配置方案。

1.概述

    首先需要安装操作系统,建议Ubuntu 16.04并且更新各组件,然后安装,最后安装Tensorflow或PyTorch。值得一提的是,本教程只能提供大致的指导,还需要读者具有Ubuntu的较好操作功底,能够自主解决一些经典的异常与错误。成为一名深度学习科学家需要首先是一名计算机科学家。

2.安装Ubuntu

    该步需要根据不同机型的情况,进行灵活处理。

    对于分析组的台式机,配置列表详见附1。

    使用UltraISO将iso镜像写入U盘中,然后从U盘启动系统。其中Group 2018机器直接选择install ubuntu,Group 2019机器需要选择try without install,然后进入桌面后双击install ubuntu 16.04图标开始安装。如果选择直接安装,PCIE BUS报错会导致无法操作。

    进入安装界面后,确认 Install third-party software 处于未选中状态,否则尝试安装graphics相关的模块是可能出错。

    其余选项结合自己的知识进行选择。

    在安装成功后,Group 2019机器还需要强行关机,重新启动后,在root用户下更改grub文件:

vim /etc/default/grub

更改以下配置为:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash pci=nomsi"

更新grub

update-grub

然后强行关机重启即可。

3.安装显卡驱动

首先更新apt与系统组件,也可以将apt源更改为tuna源,参见 https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/

apt update
apt upgrade

 

附1:分析组台式机配置

Group 2018:A001-A005 技嘉Z370 i7-8700k 32G内存 970EVO-1T 七彩虹2080Ti*2

Group 2019:A006-A009 华硕Z370-A i7-9700k 32G内存 970EVO-1T 七彩虹2080Ti*2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值