从零开始配置深度学习环境--Windows11+miniconda3+cuda12.3+cudnn8.9.7

下载Miniconda:

为了节省空间,习惯安装miniconda,功能上没有什么差别,但是胜在小而轻,只包含了Python和Conda,但并没有预装其他的库。

Miniconda的官网:https://docs.conda.io/en/latest/miniconda.html

这里我选的是python3.8的版本

查看显卡情况

虚拟环境操作:

执行:conda config --set show_channel_urls yes生成condarc文件,添加镜像源

打开condarc,粘贴如下内容:

channels:
  - https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
 
show_channel_urls: true

然后就可以创建虚拟环境了!

但是这里还不着急安装其他的包。

安装显卡驱动:

CUDA为开发者们提供利用GPU并行计算的API,加速框架的训练速度足够快,是目前最好的选择。所以还是需要安装一下方便运行pytorch。

查看自己的gpu驱动版本

cuda和驱动版本的对应关系如下:

可以从这个网站直接下载CUDA Toolkit 12.3 Update 2 Downloads | NVIDIA Developer

下载local版本会更方便,这里我下的最新版本12.3

精简安装会安装CUDA相关组件,同时也会将显卡驱动重新安装,如果不想重新安装显卡驱动,可以选择自定义安装

至此可以通过命令nvcc -V查看Cuda版本

安装cudnn:

cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。网址cuDNN Download | NVIDIA Developer

自行选择合适的版本

解压后将

  • cuDNN目录中的 bin中的文件移动到 CUDA 的 bin 目录中
  • cuDNN目录中的 include 中的文件移动到 CUDA 的 include 目录中
  • cuDNN目录中的 lib 中的文件移动到 CUDA 的 lib 目录中

这样就完成了cudnn的安装

验证安装:

还是刚刚的include路径,cudnn版本在cudnn_version.h中查看

我的cudnn版本也就是8.9.7

通过这个路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\demo_suite下打开cmd

输入命令deviceQuery.exe

再输入bandwidthTest.exe

至此就安装成功!可以在虚拟环境中进行深度学习计算啦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值