下载Miniconda:
为了节省空间,习惯安装miniconda,功能上没有什么差别,但是胜在小而轻,只包含了Python和Conda,但并没有预装其他的库。
Miniconda的官网:https://docs.conda.io/en/latest/miniconda.html
这里我选的是python3.8的版本
查看显卡情况
虚拟环境操作:
执行:conda config --set show_channel_urls yes
生成condarc文件,添加镜像源
打开condarc,粘贴如下内容:
channels:
- https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
- https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
- https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
show_channel_urls: true
然后就可以创建虚拟环境了!
但是这里还不着急安装其他的包。
安装显卡驱动:
CUDA为开发者们提供利用GPU并行计算的API,加速框架的训练速度足够快,是目前最好的选择。所以还是需要安装一下方便运行pytorch。
查看自己的gpu驱动版本
cuda和驱动版本的对应关系如下:
可以从这个网站直接下载CUDA Toolkit 12.3 Update 2 Downloads | NVIDIA Developer
下载local版本会更方便,这里我下的最新版本12.3
精简安装会安装CUDA相关组件,同时也会将显卡驱动重新安装,如果不想重新安装显卡驱动,可以选择自定义安装
至此可以通过命令nvcc -V查看Cuda版本
安装cudnn:
cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。网址cuDNN Download | NVIDIA Developer
自行选择合适的版本
解压后将
- cuDNN目录中的 bin中的文件移动到 CUDA 的
bin
目录中 - cuDNN目录中的
include
中的文件移动到 CUDA 的include
目录中 - cuDNN目录中的
lib
中的文件移动到 CUDA 的lib
目录中
这样就完成了cudnn的安装
验证安装:
还是刚刚的include路径,cudnn版本在cudnn_version.h中查看
我的cudnn版本也就是8.9.7
通过这个路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\demo_suite下打开cmd
输入命令deviceQuery.exe
再输入bandwidthTest.exe
至此就安装成功!可以在虚拟环境中进行深度学习计算啦