题目
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。
示例
输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。
精简版解析
题目:两个数组,要最长的、公共的、重复的子数组(相当于上一道题的连续子序列)的长度**(所以要连续)**
思路:两个数组了,应该就要定义二维dp数组了
1.dp数组
dp[i][j],代表以下标i-1结尾的数组1,和j-1结尾的数组2,最长的连续子数组
这里的-1是为了初始化方便以及写代码好写(从这道题开始,后面会有不少定义-1的),要注意定义了-1后,比较的时候也要用-1来比较
2.递推公式
不要求递增,只要连续且相等就行;
由于这道题只能从dp[i-1][j-1]递推出来,dp[i][j] = dp[i-1][j-1] + 1; 同时需要一个变量来存最大值
解析
首先本题是有两个数组,那么就要想到写代码的时候,遍历需要两个for循环来分别进行遍历,这一点是躲不开的,暂时先不考虑状态压缩那个版本,先想基础的;
题目要求是最长的子数组,根据示例,其实也就是求连续的最长子序列;
先用动规五部曲来分析下:
1.确定dp数组及其含义
dp[i][j]表示有两个数组nums1和nums2,以i-1为结尾的数组1和以j-1为结尾的数组2,最长重复子数组为dp[i][j];
这种情况下,记得循环的时候一定要从1开始,0就没有意义了;
那么为什么这个dp数组的含义要定义成 -1 的形式呢,主要是为了后面的逻辑好理解,首先初始化的时候,只需要初始化dp[0][0]就可以了,不然的话就需要初始化第一行和第一列
2.确定递推公式
对于两个数组,如果nums1[i] == nums2[j],则有dp[i][j] = dp[i-1][j-1] + 1
那么这里为什么都要-1呢?比如一个减一个不减的话,那么脑补一下此时比较的就不是两个数组的最长公共了;
当然还需要一个变量来存最大值
3.初始化
只需要dp[0][0] = 0,默认就是0
func findLength(nums1 []int, nums2 []int) int {
m := len(nums1)
n := len(nums2)
dp := make([][]int, m+1)
for i := 0; i <= m; i++ { // 必须有等于,不然下方代码会越界
dp[i] = make([]int, n+1)
}
res := 0
for i := 1; i <= m; i++ { // 有等于
for j := 1; j <= n; j++ {
if nums1[i-1] == nums2[j-1] {
dp[i][j] = dp[i-1][j-1] + 1
}
if res < dp[i][j] {
res = dp[i][j]
}
}
}
return res
}
如果不像上面那样处理的话,那就是下面的代码,会更复杂一点:
func findLength(nums1 []int, nums2 []int) int {
dp := make([][]int, len(nums1))
for i := 0; i < len(nums1); i++ {
dp[i] = make([]int, len(nums2))
}
for i := 0; i < len(nums1); i++ {
if nums1[i] == nums2[0] {
dp[i][0] = 1 // 第一行的某个数和第一列的第一个数相等,最长就是1
}
}
for j := 0; j < len(nums2); j++ {
if nums2[j] == nums1[0] {
dp[0][j] = 1
}
}
res := 0
for i := 0; i < len(nums1); i++ { // 第一点,循环要从0开始,不然会漏掉部分场景(再次强调!!!)
for j := 0; j < len(nums2); j++ {
if nums1[i] == nums2[j] && i > 0 && j > 0{ // 要判断越界问题
dp[i][j] = dp[i-1][j-1] + 1
}
if res < dp[i][j] {
res = dp[i][j]
}
}
}
return res
}