题目
Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
- Trie() 初始化前缀树对象。
- void insert(String word) 向前缀树中插入字符串 word 。
- boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false。
- boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix,返回 true ;否则,返回 false 。
示例
输入
[“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”]
[[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert(“apple”);
trie.search(“apple”); // 返回 True
trie.search(“app”); // 返回 False
trie.startsWith(“app”); // 返回 True
trie.insert(“app”);
trie.search(“app”); // 返回 True
解析
这道题,先要想到对应的树的结构,由于都是小写字母26位,那结构就应该是这样:
type Trie struct {
children [26]*Trie // 每个位置是一个数组,用来该位置所有的可能前缀
isEnd bool
}
整体代码是这样:
type Trie struct {
children [26]*Trie
isEnd bool
}
func Constructor() Trie {
return Trie{}
}
func (t *Trie) Insert(word string) {
for _, ch := range word {
ch -= 'a' // 减去a的ascii码,转换到26长度中去
if t.children[ch] == nil {
t.children[ch] = &Trie{}
}
t = t.children[ch]
}
// 整个都插入完成后,改变end
t.isEnd = true
}
func (t *Trie) SearchPrefix(prefix string) *Trie {
for _, ch := range prefix {
ch -= 'a'
if t.children[ch] == nil {
return nil
}
t = t.children[ch]
}
return t
}
// 下面这个函数要求的是整个单词在前缀树中,意味着要到end
func (t *Trie) Search(word string) bool {
node := t.SearchPrefix(word)
return node != nil && node.isEnd
}
// 这个只要判断前缀在树中就可以了
func (t *Trie) StartsWith(prefix string) bool {
node := t.SearchPrefix(prefix)
return node != nil
}