推荐算法:基于图的算法

这里写图片描述

上图:用户u到物品i的边,表示用户u对物品i进行了评分。给予边权值,表示u对i的评分
@@@a random-walk based scoring algorithm for recommender engines
@@@ applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering

  • 两种推荐方式:

    1. 图中的用户u对物品i的相近距离直接用于推荐。找用户u在图中的最近物品
      @@@random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
      @@@a random-walk based scoring algorithm for recommender engines
      @@@ applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering

    2. 将用户间或者物品间的相似距离看成他们之间的相似度权重 wuv 或者 wij ,然后使用邻域的方法
      @@@random-walk computation of similarities between noedes with application to collaborative recommendation
      @@@ a collabotive filtering framework based on both local user similarity and global user similarity


基于路径的相似度

最短路径

@@@Horing hatches an egg: A new graph-theoretic approach to collaborative filtering
* 通过用户结点最短距离来计算他们之间相似度的推荐方法

路径数量

@@@ applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
计算路径数量来估测连通度


随机游走模型

概率框架

itemrank

@@@a random-walk based scoring algorithm for recommender engines


平均首次通过/往返次数

  • 针对随机游走的测量距离
    @@@random-walk computation of similarities between noedes with application to collaborative recommendation
    @@@An Emperimental investigation of graph kernels on a collaborative recommendation task.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值