捷得 DX(JogetDX)是一个开源的无代码/低代码应用平台,它引入了创新功能,例如对渐进式Web应用程序(PWA)的自动支持、集成应用程序性能管理(APM)和内置人工智能(AI)支持。
在文章“人工智能、机器学习、深度学习和TensorFlow简介”中,我们介绍了这些术语背后的概念,以及通常如何工作。在本文中,我们将了解如何在捷得平台上将TensorFlow用于AI用例。
Joget DX中的AI和决策支持功能
为了简化流程自动化,Joget DX支持可以映射到处理路由以进行决策的Decision插件。捆绑了几个实现,包括无代码规则引擎和无代码TensorFlow插件,用于执行预先训练的模型。
Joget DX中的AI重点是简化预训练AI模型与最终用户应用程序的集成。正如前一篇文章中所理解的那样,人工智能模型的训练最好留给机器学习专家,因此一旦获得经过培训的模型,目标就是让应用程序设计人员尽可能地访问它。
使用捆绑的TensorFlow AI插件,您基本上可以:
上传以protobuf(.pb)格式导出的预先训练的TensorFlow模型