背景
MIMO是5G的关键技术之一。MIMO主要通过多天线技术,实现信号的空间复用,从而提高传输速率。但是也有几个问题需要解决:
- MIMO环境下的信道估计
- 信道相关性
- 空间自由度分析
目前面临的问题
- 动态的radio环境
- imperfect信道状态信息
- channel aging (由于信道的变化,固定的信道估计不能实时更新)
- 信道估计的overhead
- tradeoff of 天线数量和cost
- pilot污染
- 低复杂度的信号处理过程和硬件实现
方案[1]
在MIMO技术领域中,FDD比TDD糟糕很多,是因为大量的overhead来获取信道状态信息。如何克服这个缺点来获取FDD-MIMO比较好的速率估计呢?
前提假设: 已知信道相关矩阵
训练信道状态->得知空间信道相关性。
选取最优信道训练序列。实际上每个用户的信道序列是不同的。选取最优序列。
方案[2]
通过预测到达方向来进行信道估计。到达方向的预测是根据选择不变性技术(Rotational Invariance)来实现的。
[1] Achievable Rates of FDD Massive MIMO Systems with Spatial Channel Correlation
[2] DoA Estimation and Capacity Analysis for 3D Millimeter Wave Massive-MIMO/FD-MIMO OFDM Systems