一维最大子段和的扩展,枚举多行合成一行的情况,然后使用一维最大子段和的方法计算。 /*To the Max Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24918 Accepted: 12909 Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner: 9 2 -4 1 -1 8 and has a sum of 15. Input The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127]. Output Output the sum of the maximal sub-rectangle. Sample Input 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 Sample Output 15 Source Greater New York 2001*/ #include <stdio.h> #include "string.h" #define MAX_ARRAY_LEN 100 int gaiArray[MAX_ARRAY_LEN][MAX_ARRAY_LEN]; int gaiDp[MAX_ARRAY_LEN+1]; int main(void) {