第一题: 654.最大二叉树
这道题和前一天的最后一题比较类似,都是构造二叉树的题目。只要按照类似的方式进行递归就可以了,注意一下边界条件就ok。代码如下:
class Solution {
public:
TreeNode* travesal(vector<int>& nums) {
if(nums.size() == 0) return nullptr;
int m_max = 0, index = 0;
for(int i = 0; i < nums.size(); ++i) {
if(nums[i] > m_max) {
index = i;
m_max = nums[i];
}
}
TreeNode* root = new TreeNode(m_max);
if(nums.size() == 1) return root;
vector<int> leftTree(nums.begin(), nums.begin() + index);
vector<int> rightTree(nums.begin() + index + 1, nums.end());
root->left = travesal(leftTree);
root->right = travesal(rightTree);
return root;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return travesal(nums);
}
};
第二题: 617.合并二叉树
这道题比较容易想到递归法,只要确定了递归终止条件,并且明确单层递归的逻辑,这道题就能够很好地解决啦!代码如下:
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
if(!root1 && !root2) return nullptr;
if(root1 && !root2) return root1;
if(!root1 && root2) return root2;
TreeNode* root = new TreeNode(root1->val + root2->val);
root->left = mergeTrees(root1->left, root2->left);
root->right = mergeTrees(root1->right, root2->right);
return root;
}
};
第三题: 700.二叉搜索树中的搜索
这道题可以利用二叉搜索树的特性,左子树中的元素都小于该节点的值,右子树中的元素都大于该元素的值,既可以使用递归法也可以使用迭代法,代码如下:
①递归法:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if(!root) return nullptr;
if(root->val == val) return root;
else if(root->val < val) return searchBST(root->right, val);
else return searchBST(root->left, val);
}
};
②迭代法:对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) root = root->left;
else if (root->val < val) root = root->right;
else return root;
}
return NULL;
}
};
第四题: 98.验证二叉搜索树
要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。注意:不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了。
代码如下:
①递归法:
class Solution {
public:
long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root) {
if (root == NULL) return true;
bool left = isValidBST(root->left);
// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val;
else return false;
bool right = isValidBST(root->right);
return left && right;
}
};
②迭代法:
class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
public:
bool isValidBST(TreeNode* root) {
vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
traversal(root);
for (int i = 1; i < vec.size(); i++) {
// 注意要小于等于,搜索树里不能有相同元素
if (vec[i] <= vec[i - 1]) return false;
}
return true;
}
};
Day20打卡!!!