算法训练营Day16 第六章 二叉树part3

第一题: 104.二叉树的最大深度 (优先掌握递归)

        这道题既可以采用迭代法又可以采用递归法,递归法其实比较容易想到,只要按照递归三部曲的步骤来就能够解决,代码如下:

①递归法:

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(!root) return 0;
        return max(maxDepth(root->left) + 1, maxDepth(root->right) + 1);
    }
};

迭代法则与层序遍历相关联,可以使用层序遍历的模板,每一层遍历完成后就让depth++,最后return返回结果即可,代码如下:

②迭代法(层序遍历法):

class Solution {
public:
    int maxDepth(TreeNode* root) {
        queue<TreeNode*> que;
        int depth = 0;
        if(root) que.push(root);
        while(!que.empty()) {
            int size = que.size();
            while(size--) {
                auto node = que.front();
                que.pop();
                if(node->left) que.push(node->left);
                if(node->right) que.push(node->right);
            }
            depth++;
        }
        return depth;
    }
};

第二题: 111.二叉树的最小深度 (优先掌握递归)

        同理,这道题也可以采用递归法和迭代法。迭代法同样用到了层序遍历,解法与上一题相同,代码如下:

递归法:

class Solution {
public:
    int minDepth(TreeNode* root) {
        if(!root) return 0;
        int res = 0;
        if(root->left && !root->right) res = minDepth(root->left) + 1;
        else if(!root->left && root->right) res = minDepth(root->right) + 1;
        else res = min(minDepth(root->left), minDepth(root->right)) + 1;
        return res;
    }
};

②迭代法(层序遍历法):

class Solution {
public:
    int minDepth(TreeNode* root) {
        int res = 0;
        queue<TreeNode*> que;
        if(root)
            que.push(root);
        while(!que.empty()) {
            res++;
            int size = que.size();
            while(size--) {
                TreeNode* node = que.front();
                que.pop();
                if(!node->left && !node->right)
                    return res;//这里直接返回
                if(node->left)
                    que.push(node->left);
                if(node->right)
                    que.push(node->right);
            }
        }
        return res;//走不到这一行
    }
};

 第三题: 222.完全二叉树的节点个数(优先掌握递归)

        这道题同样可以采用递归和迭代两种方法来解决,如果没有考虑到完全二叉树的特性,只把这道题当作普通二叉树来求解,那么递归法和迭代法(层序遍历法)都需要遍历到每一个节点,时间复杂度为O(n)。如果能够考虑到完美二叉树的特性,那就能够降低算法的时间复杂度。也就是说,其实可以发现,满二叉树的节点数量为2^{n}-1.

对于完全二叉树而言只有两种情况:情况一是满二叉树,情况二是最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

在完全二叉树中,如果递归向左遍历的深度等于递归向右遍历的深度,那说明就是满二叉树。

①递归法:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

考虑到完全二叉树的特性,这样写出的算法,时间和空间复杂度都是O(logn).

②迭代法(层序遍历):

class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        int cnt = 0;
        if(root) {
            que.push(root);
            cnt++;
        }
        while(!que.empty()) {
            int size = que.size();
            while(size--) {
                auto node = que.front();
                que.pop();
                if(node->left) {
                    que.push(node->left);
                    cnt++;
                }
                if(node->right) {
                    que.push(node->right);
                    cnt++;
                }
            }
        }
        return cnt;
    }
};

第四题: 559.n叉树的最大深度

        递归法解题最为方便!

class Solution {
public:
    int maxDepth(Node* root) {
        if(!root) return 0;
        int size = root->children.size();
        int res = 0;
        for(int i = 0; i < size; ++i) {
            res = max(res, maxDepth(root->children[i]));
        }
        return res + 1;
    }
};

        Day16打卡!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值