摘要: 最小生成树算法与单源最短路径算法, 竟然仅差两行代码.
1. 代码
先上代码, 再说废话.
#include <stdio.h>
#include <malloc.h>
#define MAX_DISTANCE 10000
/**
* The structure of a Net.
*/
typedef struct Net {
int** weights;
int numNodes;
} Net, *NetPtr;
/**
* Initialize a Net.
*/
NetPtr initNet(int paraSize, int** paraData) {
int i, j;
NetPtr resultPtr = (NetPtr)malloc(sizeof(Net));
resultPtr -> numNodes = paraSize;
//Two stage space allocation.
resultPtr->weights = (int**)malloc(paraSize * sizeof(int*));
for (i = 0; i < paraSize; i ++) {
resultPtr -> weights[i] = (int*)malloc(paraSize * sizeof(int));
for (j = 0; j < paraSize; j ++) {
resultPtr -> weights[i][j] = paraData[i][j];
}//Of for j
}//Of for i
return resultPtr;
}//Of initNet
/**
* The Prim algorithm for spanning tree, or the Dijkstra algorithm for nearest path.
* @param paraAlgorithm 0 for Dijkstra, 1 for Prim
* @return The total cost of the tree.
*/
int dijkstraOrPrim(NetPtr paraPtr, int paraAlgorithm) {
int i, j, minDistance, tempBestNode, resultCost;
int source = 0;
int numNodes = paraPtr->numNodes;
int *distanceArray = (int*)malloc(numNodes * sizeof(int));
int *parentArray = (int*)malloc(numNodes * sizeof(int));
//Essentially boolean
int *visitedArray = (int*)malloc(numNodes * sizeof(int));
// Step 1. Initialize. Any node can be the source.
for (i = 0; i < numNodes; i++) {
distanceArray[i] = paraPtr->weights[source][i];
parentArray[i] = source;
visitedArray[i] = 0;
} // Of for i
distanceArray[source] = 0;
parentArray[source] = -1;
visitedArray[source] = 1;
// Step 2. Main loops.
tempBestNode = -1;
for (i = 0; i < numNodes - 1; i++) {
// Step 2.1 Find out the best next node.
minDistance = MAX_DISTANCE;
for (j = 0; j < numNodes; j++) {
// This node is visited.
if (visitedArray[j]) {
continue;
} // Of if
if (minDistance > distanceArray[j]) {
minDistance = distanceArray[j];
tempBestNode = j;
} // Of if
} // Of for j
visitedArray[tempBestNode] = 1;
// Step 2.2 Prepare for the next round.
for (j = 0; j < numNodes; j++) {
// This node is visited.
if (visitedArray[j]) {
continue;
} // Of if
// This node cannot be reached.
if (paraPtr->weights[tempBestNode][j] >= MAX_DISTANCE) {
continue;
} // Of if
// Attention: the difference between Dijkstra and Prim algorithms.
if (paraAlgorithm == 0) {
if (distanceArray[j] > distanceArray[tempBestNode] + paraPtr->weights[tempBestNode][j]) {
// Change the distance.
distanceArray[j] = distanceArray[tempBestNode] + paraPtr->weights[tempBestNode][j];
// Change the parent.
parentArray[j] = tempBestNode;
} // Of if
} else {
if (distanceArray[j] > paraPtr->weights[tempBestNode][j]) {
// Change the distance.
distanceArray[j] = paraPtr->weights[tempBestNode][j];
// Change the parent.
parentArray[j] = tempBestNode;
} // Of if
}//Of if
} // Of for j
} // Of for i
printf("the parent of each node: ");
for (i = 0; i < numNodes; i++) {
printf("%d, ", parentArray[i]);
} // Of for i
if (paraAlgorithm == 0) {
printf("From node 0, path length to all nodes are: ");
for (i = 0; i < numNodes; i++) {
printf("%d (%d), ", i, distanceArray[i]);
} // Of for i
} else {
resultCost = 0;
for (i = 0; i < numNodes; i++) {
resultCost += distanceArray[i];
printf("cost of node %d is %d, total = %d\r\n", i, distanceArray[i], resultCost);
} // Of for i
printf("Finally, the total cost is %d.\r\n ", resultCost);
}//Of if
// Step 3. Output for debug.
printf("\r\n");
return resultCost;
}// Of dijkstraOrPrim
/**
* Construct a sample net.
* Revised from testGraphTranverse().
*/
NetPtr constructSampleNet() {
int i, j;
int myGraph[6][6] = {
{0, 6, 1, 5, 0, 0},
{6, 0, 5, 0, 3, 0},
{1, 5, 0, 5, 6, 4},
{5, 0, 5, 0, 0, 2},
{0, 3, 6, 0, 0, 6},
{0, 0, 4, 2, 6, 0}};
int** tempPtr;
int numNodes = 6;
printf("Preparing data\r\n");
tempPtr = (int**)malloc(numNodes * sizeof(int*));
for (i = 0; i < numNodes; i ++) {
tempPtr[i] = (int*)malloc(numNodes * sizeof(int));
}//Of for i
for (i = 0; i < numNodes; i ++) {
for (j = 0; j < numNodes; j ++) {
if (myGraph[i][j] == 0) {
tempPtr[i][j] = MAX_DISTANCE;
} else {
tempPtr[i][j] = myGraph[i][j];
}//Of if
}//Of for j
}//Of for i
printf("Data ready\r\n");
NetPtr resultNetPtr = initNet(numNodes, tempPtr);
return resultNetPtr;
}//Of constructSampleNet
/**
* Test the Prim algorithm.
*/
void testPrim() {
NetPtr tempNetPtr = constructSampleNet();
printf("=====Dijkstra algorithm=====\r\n");
dijkstraOrPrim(tempNetPtr, 0);
printf("=====Prim algorithm=====\r\n");
dijkstraOrPrim(tempNetPtr, 1);
}//Of testPrim
/**
* The entrance.
*/
int main(){
testPrim();
return 1;
}//Of main
2. 运行结果
Preparing data
Data ready
=====Dijkstra algorithm=====
the parent of each node: -1, 0, 0, 0, 2, 2, From node 0, path length to all nodes are: 0 (0), 1 (6), 2 (1), 3 (5), 4 (7), 5 (5),
=====Prim algorithm=====
the parent of each node: -1, 2, 0, 5, 1, 2, cost of node 0 is 0, total = 0
cost of node 1 is 5, total = 5
cost of node 2 is 1, total = 6
cost of node 3 is 2, total = 8
cost of node 4 is 3, total = 11
cost of node 5 is 4, total = 15
Finally, the total cost is 15.
Press any key to continue
3. 代码说明
- 图与网络的存储都可以用矩阵. 前者存的是 boolean 值, 后者存的是权值.
- Prim 是做最小生成树, 即对应于道路构建; Dijkstra 算法是做单源最短路径, 应用于地图寻径.
- O ( n 2 ) O(n^2) O(n2) 的时间复杂度由贪心选择策略, 以及精巧的预处理获得.
- 如果用邻接表来做, 速度会更快.
- 实际上, 时间复杂度可以优化到 O ( n log n ) O(n \log n) O(nlogn), 参见 张星移的博客.