Qt-OpenCV学习笔记--边缘检测--Scharr()

本文介绍了Scharr算子在边缘检测中的应用,它是Sobel算子的一种优化。Scharr算子与Sobel算子的主要区别在于它们的卷积核设计,但在计算时间和复杂度上相同。通过OpenCV库的`cv::Scharr`函数,我们可以进行x和y方向的梯度计算。示例代码展示了如何使用OpenCV进行图像梯度检测并合并结果。
摘要由CSDN通过智能技术生成

概述

  • scharr算子实际上是sobel算子的优化。
  • 两种算子唯一的区别就是他们的卷积核不同,他们无论在计算时间还是复杂度都是一样的。

函数 

void cv::Scharr
(
	InputArray  	src,
    OutputArray 	dst,
    int 	ddepth,
    int 	dx,
    int 	dy,
    double 	scale = 1,
    double 	delta = 0,
    int 	borderType = BORDER_DEFAULT 
)	
src源图像
dst输出图像
ddepth

输出图像的深度

CV_8U

CV_16U

CV_32F

CV_64F

dxx 方向上的差分阶数,1或0
dyy 方向上的差分阶数,1或0
scale计算的导数的可选比例因子(默认情况下不用缩放)
delta可选的增量值,在将结果存储到dst之前添加到结果中
borderType图像边框扩展模式(可查阅BorderTypes,但不支持BORDER_WRAP)

测试代码

#include "widget.h"
#include "ui_widget.h"

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

using namespace cv;

Widget::Widget(QWidget *parent)
    : QWidget(parent)
    , ui(new Ui::Widget)
{
    ui->setupUi(this);

    //载入图像
    cv::Mat src = imread("C:/opencv/fruit.jpg");
    imshow("src",src);

    //x方向梯度
    cv::Mat matx;
    cv::Scharr(src,matx,CV_8U,1,0);
    imshow("matx",matx);

    //y方向梯度
    cv::Mat maty;
    cv::Scharr(src,maty,CV_8U,0,1);
    imshow("maty",maty);

    //合并梯度
    cv::Mat dst;
    cv::addWeighted(matx,0.8,maty,0.8,0,dst);
    imshow("dst",dst);

}

Widget::~Widget()
{
    delete ui;
}

测试结果

参考

 Opencv学习——边缘检测(Scharr)

OpenCV之scharr算子详解/scharr算子和sobel算子的区别

OpenCV之Scharr()函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值