大津法和局部阈值分割

图像分割中的全局阈值方法,如大津法,通过寻找使类间方差最小的阈值进行分割。但在含有噪声和非均匀光照的图像中,局部阈值分割更优,如OPENCV中的平均和高斯加权方法。实验结果显示,大津法适合单一目标分割,而局部阈值分割能处理多目标但易受噪声影响。实际应用中,这两种简单方法可能无法满足复杂场景的需求。
摘要由CSDN通过智能技术生成

除了图像边缘,阈值也是图像分割中的一种重要方法。主要包含如下两类:

(1)全局阈值分割

(2)局部阈值分割

 

全局阈值分割

大津法是一种著名的全局阈值分割方法,它的优点在于完全以在一副图像的直方图上执行为基础,而直方图是很容易得到的一维阵列。它的思路是将图像直方图的灰度像素基于某一阈值分为两类,计算两类的类间方差,通过不断迭代,使得类间方差达到极小值,从而得到阈值。OPENCV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值