BP神经网络

BP神经网络是多层前向神经网络的训练算法,通过误差反向传播调整权值和阈值以最小化训练误差。文章介绍了BP算法的工作流程、推导过程以及累计误差的概念,并建议结合图表理解其传播和更新过程。适合深度学习研发者阅读,有助于理解深度学习模型,如CNN和RNN/LSTM。
摘要由CSDN通过智能技术生成

    前向神经网络

      前向神经网络其实可以看成是多个逻辑回归的组合,只是不再是由输入直接得到结果,而是要经过隐层。其代价函数也类似逻辑函数代价函数,只不过要对各个类别求和:

  

    误差逆传播神经网络

      多层神经网络的训练需要强大的学习算法,误差逆传播(error BackPropagation,简称BP)算法是杰出代表,该算法的核心思想是先通过前向神经网络(FP)计算训练误差,利用训练误差反向作用于隐层神经元,从而调整连接权和每个神经元阈值,不断更新使得训练误差达到最小值。

     现实任务中使用神经网络时,大多是在使用BP算法进行训练,不仅可以用于多层前馈神经网络,还可用于其他类型的神经网络,例如训练递归神经网络&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值