《机器学习实战》--Logistic回归

Logistic回归介绍

优点:计算代价不高,容易理解和实现
缺点:容易欠拟合,分类精度可能不高
适用数据类型:数值型和标称型数据
Logistic回归的一般过程
1、收集数据
2、准备数据,数值型数据
3、分析数据
4、训练算法:为了找到最佳的分类回归系数
5、测试算法:一旦训练步骤完成,分类将会很快
6、使用算法

Sigmoid 函数和Logistic回归分类器

最优化理论初步
梯度下降算法
数据中的缺失项处理
回归:有一些数据点,用一条直线对这些点进行拟合,这个拟合过程成为回归。
利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。训练分类器就是寻找最佳拟合参数,使用的是最优化算法。
数据集

def loadDataSet():
    dataMat=[];labelMat=[]
    fr=open('testSet.txt')
    for line in fr.readlines():
        lineArr=line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

sigmoid函数 σ(z)=11+ez

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

基于最优化方法的最佳回归系数确定

梯度上升算法:用来算函数的最大值
梯度下降法:用来算函数的最小值
系数迭代计算
weights=weights+alpha*dataMatrix.transpose()*error
公式的推导要知道,系数变化量就是步长alpha乘以损失函数对于系数的求导
损失函数就是最小二乘
损失函数的求导就是按梯度方向减少的量error乘以x

def gradAscent(dataMatIn,classLabels):
    dataMatrix=mat(dataMatIn)
    labelMat=mat(classLabels).transpose()//数据转置操作
    m,n=shape(dataMatrix)
    alpha=0.001//目标移动的步长
    maxCycles=500//迭代次数
    weights=ones((n,1))
    for k in range(maxCycles):
        h=sigmoid(dataMatrix*weights)//矩阵相乘
        error=(labelMat-h)
        weights=weights+alpha*dataMatrix.transpose()*error//梯度下降法计算公式
    return weights

分析数据,画出决策边界

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    # weights=wei.getA()
    dataMat,labelMat=loadDataSet()
    dataArr=array(dataMat)
    n=shape(dataArr)[0]
    xcord1=[];ycord1=[]
    xcord2=[];ycord2=[]
    for i in range(n):
        if int(labelMat[i])==1:
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    x=arange(-3.0,3.0,0.1)
    y=(-weights[0]-weights[1]*x)/weights[2]#最佳拟合直线
    ax.plot(x,y)
    plt.xlabel('X1');plt.ylabel('X2')
    plt.show()

上面梯度上升法存在的问题:梯度上升算法每次更新都要遍历整个数据集,在数据量大的情况下效率较低。随即梯度上升算法:一次仅用一个样本点来更新回归系数。
在新样本到来时可以对分类器进行增量式更新,因而随即梯度上升算法是一个在线学习算法,与在线学习相对应,一次处理所有数据称为“批处理”

def stocGradAscent0(dataMatrix,classLabels):
    m,n=shape(dataMatrix)
    alpha=0.01
    weights=ones(n)
    for i in range(m):
        h=sigmoid(sum(dataMatrix[i]*weights))
        error=classLabels[i]-h
        weights=weights+alpha*error*dataMatrix[i]
    return weights

但仅仅对数据集迭代一次,准确率不够,要加快收敛速度,修改算法
所做的改动
1 alpha每次迭代都会调整,这回缓解数据波动,或者高频波动
2 通过随机选取样本系数,可以减少周期性波动
3 增加了迭代参数

def stocGradAscent1(dataMatrix,classLabels,numIter=150):
    m,n=shape(dataMatrix)
    weights=ones(n)
    for j in range(numIter):
        dataIndex=range(m)
        for i in range(m):
            alpha=4/(1.0+j+i)+0.01
            randIndex=int(random.uniform(0,len(dataIndex)))
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex]
            del[dataIndex[randIndex]]
    return weights

处理数据中的缺失值
1、使用可用特征的均值来填补缺失值
2、使用特殊值来填补缺失值,如-1
3、使用相思样本的均值添补缺失值
4、使用另外的机器学习算法预测缺失值
例子中存在缺失的分类类别则直接舍弃,存在确实的特征赋值为零,因为零不会影响logistic分类结果
以下代码:读入训练数据,测试数据,通过训练数据迭代测试得到系数weights,然后通过weights和特殊数据特征,求得分类结果,和真实值比较,返回错误率。

def classifyVector(inX,weights):
    prob=sigmoid(sum(inX*weights))
    if prob>0.5: return  1.0
    else: return 0.0
def colicTest():
    frTrain=open('horseColicTraining.txt')
    frTest=open('horseColicTest.txt')
    trainingSet=[];trainingLabels=[]
    for line in frTrain.readlines():
        currLine=line.strip().split('\t')
        lineArr=[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights=stocGradAscent1(array(trainingSet),trainingLabels,500)
    errorCount=0;numTestVec=0.0
    for line in frTest.readlines():
        numTestVec+=1.0
        currLine=line.strip().split('\t')
        lineArr=[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr),trainWeights))!=int(currLine[21]):
            errorCount+=1
    errorRate=(float(errorCount)/numTestVec)
    print "the error rate of this test is:%f"%errorRate
    return errorRate

由于每次测试随机迭代得到的系数都未必收敛,如果系数没有收敛,最后的分类结果就会改变,多次测试,错误率在30%左右

def multiTest():
    numTests=10;errorSum=0.0
    for k in range(numTests):
        errorSum+=colicTest()
    print "after %d iterations the average error rate is:%f"%(numTests,errorSum/float(numTests))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值