通过经典例题思考动态规划算法的通用解题步骤

 

动态规划算法以其独特的解题思路,在解决复杂问题时展现出强大的优势。尽管问题千变万化,但通过分析经典例题,我们能总结出一套通用的解题步骤,帮助我们高效地运用动态规划解决各类问题。

步骤一:定义状态

以“最长公共子序列”问题为例,给定两个字符串 text1 和 text2 ,我们要找出它们的最长公共子序列长度。定义状态时,通常会创建一个二维数组 dp ,其中 dp[i][j] 表示 text1 的前 i 个字符和 text2 的前 j 个字符的最长公共子序列长度。这种状态定义方式,能清晰地描述子问题,为后续推导状态转移方程奠定基础。再如“背包问题”,假设有 n 个物品,每个物品有重量 w[i] 和价值 v[i] ,背包容量为 W ,我们定义 dp[i][j] 为考虑前 i 个物品,放入容量为 j 的背包中所能获得的最大价值,以此来刻画子问题状态。

步骤二:推导状态转移方程

这是动态规划的核心步骤。在“最长公共子序列”问题中,若 text1[i - 1] 等于 text2[j - 1] ,那么 dp[i][j] = dp[i - 1][j - 1] + 1 ,因为找到了一个新的公共字符,公共子序列长度增加 1 ;若不相等,则 dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) ,取两种情况的最大值,即要么不考虑 text1 的第 i 个字符,要么不考虑 text2 的第 j 个字符。对于“背包问题”,若当前背包容量 j 大于等于物品 i 的重量 w[i] ,则 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]) ,表示要么不放入物品 i ,要么放入物品 i 并加上其价值;若 j 小于 w[i] ,则 dp[i][j] = dp[i - 1][j] ,即无法放入物品 i ,价值不变。

步骤三:设定初始条件和边界情况

在“最长公共子序列”问题中,当 i 为 0 或者 j 为 0 时,意味着其中一个字符串为空,此时最长公共子序列长度为 0 ,即 dp[0][j] = 0 ,dp[i][0] = 0 。在“背包问题”里,同样当 i 为 0 (没有物品)或者 j 为 0 (背包容量为 0 )时,能获得的最大价值为 0 ,即 dp[0][j] = 0 ,dp[i][0] = 0 。同时,在处理状态转移方程时,要注意数组下标越界等边界情况,确保程序的正确性。

步骤四:确定计算顺序

动态规划的计算顺序分为自顶向下(记忆化搜索)和自底向上(递推)。自顶向下通常使用递归结合记忆化数组,先尝试求解大问题,在过程中遇到子问题时,先检查是否已经计算过,若已计算则直接返回结果,否则递归求解。自底向上则是从最小的子问题开始,按照一定顺序逐步计算出更大规模的问题。例如在上述经典问题中,一般采用自底向上的递推方式,从 dp[0][0] 开始,按照行或列的顺序依次计算每个状态的值,直至得到最终问题的解。

通过对这些经典例题的深入分析,熟练掌握动态规划算法的通用解题步骤,我们就能在面对各种新问题时,快速找到解题思路,运用动态规划算法高效地解决问题 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值