从零开始的ubuntu下的caffe配置

去年十月开始接触caffe,当时装了一次之后就放着了,一直也没有想去更新,最近又装了两次,感觉顺利多了,在这里记录一下,作为第一篇博客。


入门级步骤,主要分为三个部分,首先是英文版的ubuntu,然后cuda、opencv、glog、cudnn等一堆依赖项,最后是配置caffe、测试。整个过程顺利的话差不多大半天了,当然事实其实是没有这么顺利的,只有你想不到,没有你遇不到(哈哈哈哈,这就是我对caffe配置在总结!)

开始讲正事。。。。。。。。。。。。

(一)、ubuntu和windows双系统安装

大多数朋友应该都是偏向windows系统的吧,个人也差不多,虽然ubuntu也越来越顺手了,还是坚决不卸windows,所以一直用双系统。具体安装有很多博客都讲得特别清楚了,收藏了一篇博客http://www.jianshu.com/p/2eebd6ad284d,每次安装都是照这个教程来的。

装好系统之后建议先检查nvidia驱动,接下来安装的基础就是显卡驱动没问题,可以在命令行输入nvidia-smi查看显卡使用情况,显示了相应数据就是没问题的。有问题可以参照点击打开链接

(二)、开始配置caffe环境

这个过程比较复杂,分为几个步骤:

# 以下所有指令都是在超级权限下运行的(sudo –i进入超级权限)

之前说的检查驱动,如果没有进行现在最好看一下,在命令行输入nvidia-smi 看会不会显示显卡使用情况,如果没有配置好显卡可以参照http://www.cnblogs.com/xia-Autumn/p/6228913.html 双显卡存在切换问题,配置cuda之前一定要检查好。

       一.安装CUDA

1.控制台进入到Download下,输入以下命令

dpkg -i cuda-repo-ubuntu1604-8-0-local_ga2_8.0.61-1_amd64.deb

apt-get update

apt-get install -y cuda

2.环境配置,输入gedit /etc/profile,在结尾处添加如下文本

export CUDA_HOME=/usr/local/cuda-7.0
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
PATH=${CUDA_HOME}/bin:${PATH}

export PATH

保存后输入source /etc/profile 使环境变量立即生效

3.输入 gedit/etc/ld.so.conf.d/cuda.conf ,输入如下文本

/usr/local/cuda/lib64

进行链接,输入 

ldconfig -v

(cuda安装一般不会报错,但是不一定就是安装好的,建议检查一下是否安装成功点击打开链接这个博文的cuda配置部分可以作为参考)

二.安装Python

apt-get install –y ipython-notebook pandoc

三.安装opencv

这个博文讲得比较清楚点击打开链接可以从里面复制代码,下面的代码虽然一样,可能是格式问题,运行会出现一点问题

1.unzipopencv-3.0.0.zip

   cd opencv-3.0.0

   mkdir release  

2.sudo apt-get install build-essential cmake libgtk2.0-dev pkg-config Python-dev python-numpy libavcodec-dev libavformat-dev libswscale-dev

3.cd release

cmake -DCMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..  

4. sudo makeinstall 

五.安装其他依赖项

1.首先安装glog,选择的是

glog-0.3.3.tar.gz,控制台进入Download,输入: 

tar zxvf glog-0.3.3.tar.gz ,解压后进入文件夹,输入 

./configure ,然后 make ,然后 makeinstall

2.然后是其他一大堆依赖项控制台输入 

 sudo apt-get install git

 sudo apt-get install libprotobuf-dev  libleveldb-dev  libsnappy-dev  libopencv-dev libhdf5-serial-dev protobuf-compiler

 sudo apt-get install --no-install-recommends  libboost-all-dev

 sudo apt-get install libatlas-base-dev

 sudo apt-get install python-dev

 sudo apt-get install libgflags-dev libgoogle-glog-dev  liblmdb-dev

3.安装cuDNN,解压cuDNN,控制台进入文件夹,输入以下指令(解压之后进入相应文件夹,根据文件名自行修改路径)

cp cudnn.h /usr/local/include

cp libcudnn.so /usr/local/lib

cp libcudnn.so.6 /usr/local/lib

cp libcudnn.so.6.0.21 /usr/local/lib

链接cuDNN的库文件

ln -sf /usr/local/lib/libcudnn.so.6.0.21/usr/local/lib/libcudnn.so.6

ln -sf /usr/local/lib/libcudnn.so.6/usr/local/lib/libcudnn.so

ldconfig -v

六.配置Caffe

1. git clone https://github.com/bvlc/caffe.git

 cd caffe/

 mv Makefile.config.example Makefile.config

2.修改Makefile.config文件,gedit Makefile.config

对于有NVIDIA显卡的设备,设置如下:

a. 启用CUDNN,去掉"#"

USE_CUDNN := 1

b. 配置一些引用文件

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include/usr/lib/x86_64-linux-gnu/hdf5/serial/include

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib/usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial

c. 配置路径,实现caffe对Python和Matlab接口的支持(如果没有配置matlab下面的matlab可以不用启用)

PYTHON_LIB := /usr/local/lib

MATLAB_DIR := /usr/local/MATLAB/R2014a

3. 修改Makefile文件, gedit Makefile

查找“Derive includeand lib directories”一节,在这一段的最后一个“LIBRARIES +=”,增加opencv_imgcodecs,让该处最后一行变成如下:

(注意不要重复添加)

opencv_core opencv_highguiopencv_imgproc opencv_imgcodecs

七.编译Caffe

进入caffe,输入 

# -j8是多线程编译 根据CPU实际情况修改 4核8线程就用-j8

make all -j8 

make test -j8

make runtest -j8

编译Python和Matlab用到的caffe文件

make pycaffe -j8

make matcaffe -j8

至此,caffe在Ubuntu下的配置就完成了.

 (三)、测试

最后测试caffe环境搭建是否成功

1.      进入caffe文件夹 输入 sh data/mnist/get_mnist.sh 获取数据

2.     压缩数据为lmdb格式 sh examples/mnist/create_mnist.sh

3.     开始训练  对于有NVIDIA显卡的设备,直接输入sh examples/mnist/train_lenet.sh 即可开始训练,预计30s以上

 如果训练过程没有报错,那基本上整个框架就搭建好了.

可以说caffe是个怪脾气的老人家,刚开始必须耐心哄好了,后面可就好说话了,配置好caffe后进行图像识别可以说是特别方便了,之后的内容等待之后继续整理~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值