物体识别全流程(Ubuntu16.04)结合ROS

物体识别全流程(Ubuntu16.04)结合ROS

1.使用labellmg,标记图片,生成xml标签

在此下载labellmg包
下载之后解压到要放置的目录
推荐使用Python3+Qt5
打开labellmg包
在当前目录终端下运行如下命令行

sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py

在运行第二行命令时可能会出现缺少pip3之类的提示,可以通过运行这个解决 sudo apt-get install python3-pip

关于labellmg的使用的关键步骤在这里插入图片描述

Ctrl + u Load all of the images from a directory
Ctrl + r Change the default annotation target dir
Ctrl + s Save
Ctrl + d Copy the current label and rect box
Space Flag the current image as verified
w Create a rect box
d Next image
a Previous image

del Delete the selected rect box
Ctrl++ Zoom in
Ctrl-- Zoom out
↑→↓← Keyboard arrows to move selected rect box
推荐使用voc格式

2.下载并安装darknet

可参考下列链接
https://pjreddie.com/darknet/yolo/

在这运行
运行到此步骤即可,无需进行下面步骤

3.制作自己的数据集

可参考下列链接,十分详细
但是
因为此链接是在windows下配置的,所以多少有些不同,比如图片名字那一部分,那个脚本在ununtu下运行是无效的,不过可以通过写一个简单的c程序打印出来

https://blog.csdn.net/qq_34806812/article/details/81673798

4.利用训练好的数据集,开始在ros环境下进行物体识别

4.1 将下列链接的内容下载到ROS工作空间的src目录下

在此下载

4.2配置kinect2摄像头

该链接是我的一个学长写的,亲测有效,https://blog.csdn.net/dragongiri/article/details/98597607

4.3编译工作空间

在工作空间下使用 catkin_make 命令;

5.开始识别

5.1

将之前训练好的bakeup/.weights文件放到 /catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config/weights
将之前改好的好的 .cfg 文件放到 /catkin_ws/src/darknet_ros/darknet_ros/yolo_network_config/cfg

将这个/catkin_ws/src/darknet_ros/darknet_ros/config/yolov3-voc.yaml文件中的config_fileweight_filenames根据实际情况修改,其实就是之前添加进来的两个文件在这里插入图片描述注意名字顺序一定要和之前在训练数据集时的名字顺序一致,否则极可能出错

大功告成,最后启动两个launch节点starting!!!

roslaunch kinect2_bridge kinect2_bridge.launch
roslaunch darknet_ros darknet_ros.launch
©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值