numpy笔记

ndarray创建方式

# 1.从列表、元组等类型创建ndarray
x1 = np.array([1,2,3,4])
[1 2 3 4]
x2 = np.array((5,6,7,8))
[5 6 7 8]
x3 = np.array([[1,2],[3,4],(0.2,0.5)])

[[1.  2. ]
 [3.  4. ]
 [0.2 0.5]]

2.arange ones zeros等函数

y1 = np.arange(10)
[0 1 2 3 4 5 6 7 8 9]
 ##ones zeros eye默认为浮点数类型,除非指定
y2 = np.ones((2,3,6))
[[[1. 1. 1. 1. 1. 1.]
  [1. 1. 1. 1. 1. 1.]
  [1. 1. 1. 1. 1. 1.]]

 [[1. 1. 1. 1. 1. 1.]
  [1. 1. 1. 1. 1. 1.]
  [1. 1. 1. 1. 1. 1.]]]
y3 = np.zeros((3,6),dtype=np.int32)
[[0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [0 0 0 0 0 0]]
y4 = np.eye(5)
[[1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0.]
 [0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 1.]]

3.linspace concatenate

z1 = np.linspace(1,10,4) #从1到10等间距取4个元素
[ 1.  4.  7. 10.]
z2 = np.linspace(1,10,4,endpoint=False) # endpoint表示最后的数是否可取
[1.   3.25 5.5  7.75]
z = np.concatenate((z1,z2)) # 合并z1,z2
[ 1.    4.    7.   10.    1.    3.25  5.5   7.75]

ndarray维度变换

# 维度变换
# 1.reshape(shape) 返回shape形状的数组,原数组不变
# 2.resize(shape) 与reshape功能一致,但改变原数组
# 3.swapeaxes(ax1,ax2) 将两个维度调换
# 4. flatten() 对数据进行降维,返回一维数组,原数组不变
a = np.ones((2,3,4),dtype=np.int32)
print(a.reshape((3,8)))
[[1 1 1 1 1 1 1 1]
 [1 1 1 1 1 1 1 1]
 [1 1 1 1 1 1 1 1]]
print(a.flatten())
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

ndarray转为列表

print(a.tolist())
[[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]

待更新…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值