卷积神经网络(六)---实现 cifar10 分类

        cifar10 数据集有60000张图片,每张图片的大小都是 32x32 的三通道的彩色图,一共是10种类别、每种类别有6000张图片,如图4.27所示。

图 4.27  cifar数据集

        使用前面讲过的残差结构来处理 cifar10 数据集,可以实现比较高的准确率。

        首先进行图像增强,使用前面介绍的增强方式。

train_transform = transforms.Compose([
    transforms.Scale(40),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

        注意只对训练图片进行图像增强,提高其泛化能力,对于测试集,仅对其中心化,不做其他的图像增强。

        下面先定义好 resnet 的基本模块。

def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(
        in_channels,
        out_channels,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False
    )


# Residual Block
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = conv3x3(in_channels, out_channels, stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(out_channels, out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

        和前面介绍的内容一样,先定义残差模块,再将残差模块拼接起来,注意其中的维度变化。

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = conv3x3(3, 16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block, 16, layers[0])
        self.layer2 = self.make_layer(block, 32, layers[0], 2)
        self.layer3 = self.make_layer(block, 64, layers[0], 2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64, num_classes)

    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                conv3x3(self.in_channels, out_channels, stride=stride),
                nn.BatchNorm2d(out_channels)
            )
        layers = [block(self.in_channels, out_channels, stride, downsample)]
        self.in_channels = out_channels
        for i in range(1, blocks):
            layers.append(block(out_channels, out_channels))
        return nn.Sequential(*layers)

    def foward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)
        return out

        最后在 cifar10 的数据集上跑100个 epoch,实现66.61%的训练集准确率,68%的验证集准确率,因为这里只跑了100次,所以还有一定的提升空间。同时使用更深的残差和更多的训练技巧能实现更好的实验结果,如图4.28所示。

        因为这里我是按照自己的想法写的普通版本的 cifar10 分类识别,所以准确率最后并不是很高,如果有人读懂了上面的方法,可以进行试一试。

  • 6
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种在图像识别、自然语言处理等领域广泛应用的深度学习模型。在cifar-10图像分类任务中,我们可以使用CNN实现高效准确的图像分类。 首先,我们需要准备cifar-10数据集。该数据集包含了10个类别的60000张32x32像素的彩色图像,其中50000张用于训练,10000张用于测试。我们可以使用Python的Keras库来加载数据集。 然后,我们可以定义一个CNN模型来对图像进行分类。该模型通常由多个卷积层和池化层组成。卷积层用于提取图像的特征,池化层用于减小特征图的大小。在最后一层之后,我们可以添加一个全连接层和一个softmax层来输出每个类别的概率分布。 下面是一个简单的CNN模型实现: ```python from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = Sequential() # 第一层卷积层 model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) # 第一层池化层 model.add(MaxPooling2D(pool_size=(2, 2))) # 第二层卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) # 第二层池化层 model.add(MaxPooling2D(pool_size=(2, 2))) # 第三层卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) # 全连接层 model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) ``` 接下来,我们可以编译模型并训练数据集: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test)) ``` 在训练完成后,我们可以使用测试集对模型进行评估: ```python loss, accuracy = model.evaluate(x_test, y_test) print('Test loss:', loss) print('Test accuracy:', accuracy) ``` 通过调整CNN的架构和超参数,我们可以进一步提高模型的准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值