动态规划:0-1背包问题

对于一个可装重量为c的背包和一堆价值为v重量为w的货物,求背包能装下的最大价值。

对于每件货物,只有1(装入)或0(不装入)两种状态,因此称为0-1背包问题。

这个问题是有最优子结构的。对于货物是否装入的序列{y1,y2,…,yn},其子序列{y2,…,yn}也是相应子问题的最优解。

设0-1背包问题的最优值为dp[ i ][ j ],意为包括前i件货物时,最大装载为j时的最佳装载。

举个例子:
c = 10
weight = [2, 2, 6, 5, 4]
value = [6, 3, 5, 4, 6]
dp如下图:
在这里插入图片描述第0行所代表的是没有包含点的情况,因此全部为0.

第1行只有一个货物,因此在j=2时,背包可以装下第一个货物,之后的dp全部为6.

第2行是包含前两个情况的时候。直到j=4的时候才有能力将两件货物全部纳入。

对于dp[ i ][ j ],由如下规则计算:

无法装下新货物:dp[ i - 1 ][ j ]

能装下时,考虑值不值
①装:dp[ i - 1 ] [j - w[ i ] ] + v[ i ]
②不装:dp[ i - 1 ][ j ]

这个时候是谁大选谁。

代码:

def knapsack(m, n, w, v, dp):
    for i in range(1, m):
        for j in range(1, n):
            if w[i] > j:
                dp[i][j] = dp[i-1][j]
            else:
                if dp[i-1][j-w[i]] + v[i] >= dp[i-1][j]:
                    dp[i][j] = dp[i-1][j-w[i]] + v[i]
                else:
                    dp[i][j] = dp[i-1][j]
    return dp[m-1][n-1]


if __name__ == '__main__':
    c = 10
    weight = [0, 2, 2, 6, 5, 4]
    value = [0, 6, 3, 5, 4, 6]
    dp = []
    for i in range(0, len(weight)):
        dp.append([])
        for j in range(0, c+1):
            dp[i].append(0)
    print(knapsack(len(weight), c+1, weight, value, dp))
    for i in range(0, len(weight)):
        print(dp[i])

转载注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值