常用不等式(1)


不等式是一个贯通初中和高中的学习重点,本文将由浅入深,详细介绍不等式及其应用。

一、不等式的基础概念

1. 不等式的定义

不等式是用不等号表示大小关系的式子。不等号包括 “ > > >” “ < < <” “ ≥ \geq ” “ ≤ \leq ” 和 “ ≠ \neq =”。

2. 不等式的性质

  1. 不等式的性质1: a > b a>b a>b,则 a ± c > b ± c a\pm c>b\pm c a±c>b±c
    由这条性质,我们可以得到:
    • a > b ⇔ a − b > 0 a>b\Leftrightarrow a-b>0 a>bab>0
    • a = b ⇔ a − b = 0 a=b\Leftrightarrow a-b=0 a=bab=0
    • a < b ⇔ a − b < 0 a<b\Leftrightarrow a-b<0 a<bab<0
      这三个重要关系可以帮助我们判断两个式子的大小关系。
  2. 不等式的性质2:
    • a > b a>b a>b,则 a c > b c . ac>bc. ac>bc.
    • a > b a>b a>b,则 a c < b c . ac<bc. ac<bc.
  3. 不等式的对称性 a > b ⇔ b < a . a>b\Leftrightarrow b<a. a>bb<a.
  4. 不等式的传递性 a > b ,   b > c ⇔ a > c . a>b,\ b>c\Leftrightarrow a>c. a>b, b>ca>c.

以下还有几个由上述性质推导而来的重要性质:

  • a > b ,   c > d ⇔ a + c > b + d . a>b,\ c>d\Leftrightarrow a+c>b+d. a>b, c>da+c>b+d.
  • a > b ,   a b > 0 ⇒ 1 a < 1 b . a>b,\ ab>0\Rightarrow\dfrac{1}{a}<\dfrac{1}{b}. a>b, ab>0a1<b1.
  • a > b > 0 ,   c > d > 0 ⇒ a c > b d ,   d a < c b . a>b>0,\ c>d>0\Rightarrow ac>bd,\ \dfrac{d}{a}<\dfrac{c}{b}. a>b>0, c>d>0ac>bd, ad<bc.
  • a > b > 0 ⇒ a n > b n ,   a n > b n   ( n ∈ N a>b>0\Rightarrow a^n>b^n,\ \sqrt[n]{a}>\sqrt[n]{b}\ (n\in\N a>b>0an>bn, na >nb  (nN n > 1 ) n>1) n>1)

3. 实数大小的比较

  1. 可以直接应用不等式的性质,基本不等式和函数单调性来判断。
  2. 作差比较和作商比较

二、常用小结论

1. 命题 1

a , b ∈ R + a,b\in\R_+ a,bR+,则 a 3 + b 3 ≥ a 2 b + a b 2 a^3+b^3\ge a^2b+ab^2 a3+b3a2b+ab2,其中等号成立当且仅当 a = b a=b a=b

证明: 作差法。
∵ a 3 + b 3 − ( a 2 b + a b 2 ) = a 2 ( a − b ) + b 2 ( b − a ) = ( a − b ) 2 ( a + b ) ≥ 0 \because a^3+b^3-(a^2b+ab^2)=a^2(a-b)+b^2(b-a)=(a-b)^2(a+b)\ge0 a3+b3(a2b+ab2)=a2(ab)+b2(ba)=(ab)2(a+b)0
∴ a 3 + b 3 ≥ a 2 b + a b 2 \therefore a^3+b^3\ge a^2b+ab^2 a3+b3a2b+ab2,其中等号成立当且仅当 a = b . a=b. a=b.

来一道简单的题目练练手:

证明对所有正实数 a , b , c a,b,c a,b,c,有 ( a 3 + b 3 + a b c ) − 1 + ( b 3 + c 3 + a b c ) − 1 + ( c 3 + a 3 + a b c ) − 1 ≤ ( a b c ) − 1 . (a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(c^3+a^3+abc)^{-1}\le(abc)^{-1}. (a3+b3+abc)1+(b3+c3+abc)1+(c3+a3+abc)1(abc)1.

证明: ∑ 1 a 3 + b 3 + a b c ≤ ∑ 1 a 2 b + a b 2 + a b c = ∑ c a b c ( a + b + c ) = 1 a b c . \displaystyle\sum\dfrac{1}{a^3+b^3+abc}\le\sum\dfrac{1}{a^2b+ab^2+abc}=\sum\dfrac{c}{abc(a+b+c)}=\dfrac{1}{abc}. a3+b3+abc1a2b+ab2+abc1=abc(a+b+c)c=abc1.

注: 这里的 ∑ \sum 表示轮换对称多项式 a , b , c ⋯ a,b,c\cdots a,b,c 的变换。

2. 命题 2

命题 1 的推广结论

a , b ∈ R + ,   n ∈ Z ,   s , t a,b\in\R_+,\ n\in\Z,\ s,t a,bR+, nZ, s,t 为非负整数,且 s + t = n s+t=n s+t=n,则 a n + b n ≥ a s b t + a t b s . a^n+b^n\ge a^sb^t+a^tb^s. an+bnasbt+atbs.等号成立当且仅当 a = b a=b a=b

证明: 还是作差法。
a n + b n − ( a s b t + a t b s ) = ( a s − b s ) ( a t − b t ) a^n+b^n-(a^sb^t+a^tb^s)=(a^s-b^s)(a^t-b^t) an+bn(asbt+atbs)=(asbs)(atbt)
∵ a s − b s \because a^s-b^s asbs a t − b t a^t-b^t atbt 同正负
∴ ( a s − b s ) ( a t − b t ) ≥ 0. \therefore (a^s-b^s)(a^t-b^t)\ge0. (asbs)(atbt)0.
∴ a n + b n ≥ a s b t + a t b s \therefore a^n+b^n\ge a^sb^t+a^tb^s an+bnasbt+atbs,等号成立当且仅当 a = b . a=b. a=b.

应用一下:
a , b , c a,b,c a,b,c 是正实数,且 a b c = 1 abc=1 abc=1,求证: a b a 5 + b 5 + a b + b c b 5 + c 5 + b c + c a c 5 + a 5 + c a ≤ 1 \dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\le1 a5+b5+abab+b5+c5+bcbc+c5+a5+caca1,并指出等号成立的条件。

证明: a b a 5 + b 5 + a b = a 2 b 2 c a 5 + b 5 + a 2 b 2 c ≤ a 2 b 2 c a 2 b 3 + a 3 b 2 + a 2 b 2 c = c a + b + c \dfrac{ab}{a^5+b^5+ab}=\dfrac{a^2b^2c}{a^5+b^5+a^2b^2c}\le\dfrac{a^2b^2c}{a^2b^3+a^3b^2+a^2b^2c}=\dfrac{c}{a+b+c} a5+b5+abab=a5+b5+a2b2ca2b2ca2b3+a3b2+a2b2ca2b2c=a+b+cc
∴ ∑ a b a 5 + b 5 + a b ≤ ∑ c a + b + c = 1. \therefore\displaystyle\sum\dfrac{ab}{a^5+b^5+ab}\le\sum\dfrac{c}{a+b+c}=1. a5+b5+ababa+b+cc=1.
等号成立当且仅当 a = b = c . a=b=c. a=b=c.

3. 命题 3

命题 3 在命题 2 的基础上进一步推广。

a , b , c ∈ R + ,   n ∈ N ,   p , q , r a,b,c\in\R_+,\ n\in\N,\ p,q,r a,b,cR+, nN, p,q,r 为非负整数,且 p + q + r = n p+q+r=n p+q+r=n,则 a n + b n + c n ≥ a p b q c r + a q b r c p + a r b p c q . a^n+b^n+c^n\ge a^pb^qc^r+a^qb^rc^p+a^rb^pc^q. an+bn+cnapbqcr+aqbrcp+arbpcq.
这个不等式的证明需要用到算术—几何平均不等式,惊不惊喜,意不意外?

证明: 需要用到均值不等式。
p a n + q b n + r c n n = a n ⋅ p + b n ⋅ q + c n ⋅ r n ≥ a n p b n q c n r n = a p b q c r . \dfrac{pa^n+qb^n+rc^n}{n}=\dfrac{a^n\cdot p+b^n\cdot q+c^n\cdot r}{n}\ge\sqrt[n]{a^{np}b^{nq}c^{nr}}=a^pb^qc^r. npan+qbn+rcn=nanp+bnq+cnrnanpbnqcnr =apbqcr.
同理可得 q a n + r b n + p c n n ≥ a q b r c p \dfrac{qa^n+rb^n+pc^n}{n}\ge a^qb^rc^p nqan+rbn+pcnaqbrcp r a n + p b n + q c n n ≥ a r b p c n \dfrac{ra^n+pb^n+qc^n}{n}\ge a^rb^pc^n nran+pbn+qcnarbpcn
三式相加,即得结论成立。

△ A B C \triangle ABC ABC 中, S S S 是半周长, Δ \Delta Δ 是面积,求证: ( S − a ) 4 + ( S − b ) 4 + ( S − c ) 4 ≥ Δ 2 . (S-a)^4+(S-b)^4+(S-c)^4\ge\Delta^2. (Sa)4+(Sb)4+(Sc)4Δ2.

4. 命题 4

a i ∈ R + ( i = 1 , 2 , ⋯   , m ) , n a_i\in\R^+(i=1,2,\cdots,m),n aiR+(i=1,2,,m),n 是自然数, p k p_k pk 是非负整数 ( k = 1 , 2 , ⋯   , s ) (k=1,2,\cdots,s) (k=1,2,,s),且 ∑ k = 1 s p k = n , a m + i = a i ( i = 1 , 2 , ⋯   , m ) \displaystyle\sum_{k=1}^sp_k=n,a_{m+i}=a_i(i=1,2,\cdots,m) k=1spk=n,am+i=ai(i=1,2,,m),则 ∑ i = 1 m a i n ≥ ∑ i = 1 m a i p 1 a i + 1 p 2 ⋯ a i + s − 1 p s . \displaystyle\sum_{i=1}^ma_i^n\ge\sum_{i=1}^ma_i^{p_1}a_{i+1}^{p_2}\cdots a_{i+s-1}^{p_s}. i=1maini=1maip1ai+1p2ai+s1ps.
等号成立当且仅当 a 1 = a 2 = ⋯ = a m . a_1=a_2=\cdots=a_m. a1=a2==am.

证明思想和命题 3 类似。


5. 命题 5

对于任意非负实数 x , y x,y x,y,恒有 x + y ≤ x + y ≤ 2 ( x + y ) . \sqrt{x+y}\le \sqrt{x}+\sqrt{y}\le\sqrt{2(x+y)}. x+y x +y 2(x+y) .

证明: 平方,得 x + y ≤ x + y + 2 x y ≤ 2 ( x + y ) . x+y\le x+y+2\sqrt{xy}\le 2(x+y). x+yx+y+2xy 2(x+y). x y = 0 xy=0 xy=0 时, x + y ≤ x + y \sqrt{x+y}\le \sqrt{x}+\sqrt{y} x+y x +y 成立;
x = y x=y x=y 时, x + y ≤ 2 ( x + y ) \sqrt{x}+\sqrt{y}\le\sqrt{2(x+y)} x +y 2(x+y) 成立。

这是一个很重要的命题,在很多证明过程中都会应用到。


三、常用不等式

1. 基本不等式

  1. 如果 a ,   b ∈ R a,\ b\in\R a, bR,那么 a 2 + b 2 ≥ 2 a b , a^2+b^2\geq 2ab, a2+b22ab,其中等号成立当且仅当 a = b . a=b. a=b.

    证明: 使用完全平方公式即可,十分简单。
    ∵ a 2 − 2 a b + b 2 = ( a − b ) 2 ≥ 0 \because a^2-2ab+b^2=(a-b)^2\geq0 a22ab+b2=(ab)20
    ∴ a 2 + b 2 ≥ 2 a b \therefore a^2+b^2\geq 2ab a2+b22ab
    等号成立当且仅当 ( a − b ) 2 = 0 (a-b)^2=0 (ab)2=0,即 a = b . a=b. a=b.

  2. 如果 a ,   b ,   c ∈ R a,\ b, \ c\in\R a, b, cR,那么 a 2 + b 2 + c 2 ≥ a b + b c + c a , a^2+b^2+c^2\geq ab+bc+ca, a2+b2+c2ab+bc+ca,其中等号成立当且仅当 a = b = c . a=b=c. a=b=c.

    证明: 这个不等式的证明也很容易,仍然是使用完全平方公式。
    ∵ 2 ( a 2 + b 2 + c 2 ) − 2 ( a b + b c + c a ) = ( a − b ) 2 + ( b − c ) 2 + ( c − a ) 2 ≥ 0 \because 2(a^2+b^2+c^2)-2(ab+bc+ca)=(a-b)^2+(b-c)^2+(c-a)^2\geq0 2(a2+b2+c2)2(ab+bc+ca)=(ab)2+(bc)2+(ca)20
    ∴ 2 ( a 2 + b 2 + c 2 ) ≥ 2 ( a b + b c + c a ) \therefore 2(a^2+b^2+c^2)\geq 2(ab+bc+ca) 2(a2+b2+c2)2(ab+bc+ca),即 a 2 + b 2 + c 2 ≥ a b + b c + c a a^2+b^2+c^2\geq ab+bc+ca a2+b2+c2ab+bc+ca
    等号成立当且仅当 ( a − b ) 2 = ( b − c ) 2 = ( c − a ) 2 = 0 (a-b)^2=(b-c)^2=(c-a)^2=0 (ab)2=(bc)2=(ca)2=0,即 a = b = c . a=b=c. a=b=c.


前面的都是初一同学就能熟练掌握的知识点,接下来就讲点难的。

2. 算术—几何平均不等式

算术平均数(Arithmetic mean) A n = 1 n ∑ i = 1 n a i A_n=\dfrac{1}{n}\displaystyle \sum_{i=1}^n a_i An=n1i=1nai
几何平均数(Geometric mean) G n = ∏ i = 1 n a i n G_n=\sqrt[n]{\displaystyle \prod_{i=1}^n a_i} Gn=ni=1nai

定理: 两个正数 a ,   b a,\ b a, b 的算术平均数 a + b 2 \dfrac{a+b}{2} 2a+b 不小于它们的几何平均数 a b \sqrt{ab} ab 。即:如果 a ,   b ∈ R + a,\ b\in\R_+ a, bR+,那么 a + b 2 ≥ a b , \dfrac{a+b}{2}\geq\sqrt{ab}, 2a+bab ,其中等号成立当且仅当 a = b . a=b. a=b.

证明很简单,这里就不再赘述。

类似地,对于三个和四个正数的算术平均数和几何平均数,有:

  1. 如果 a ,   b ,   c ∈ R + a,\ b,\ c\in\R_+ a, b, cR+,那么 a + b + c 3 ≥ a b c 3 , \dfrac{a+b+c}{3}\geq\sqrt[3]{abc}, 3a+b+c3abc ,其中等号成立当且仅当 a = b = c . a=b=c. a=b=c.
  2. 如果 a ,   b ,   c ,   d ∈ R + a,\ b,\ c,\ d\in\R_+ a, b, c, dR+,那么 a + b + c + d 4 ≥ a b c d 4 , \dfrac{a+b+c+d}{4}\geq\sqrt[4]{abcd}, 4a+b+c+d4abcd ,其中等号成立当且仅当 a = b = c = d . a=b=c=d. a=b=c=d.

先来证明三个数的不等式。

证明: x = a 3 ,   y = b 3 ,   z = c 3 x=\sqrt[3]{a},\ y=\sqrt[3]{b},\ z=\sqrt[3]{c} x=3a , y=3b , z=3c ,则 A 3 ≥ G 3 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z . A_3\geq G_3\Leftrightarrow x^3+y^3+z^3\geq 3xyz. A3G3x3+y3+z33xyz.
x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)
∵ x + y + z > 0 ,   x 2 + y 2 + z 2 − x y − y z − z x ≥ 0 \because x+y+z>0,\ x^2+y^2+z^2-xy-yz-zx\geq0 x+y+z>0, x2+y2+z2xyyzzx0
∴ x 3 + y 3 + z 3 ≥ 3 x y z \therefore x^3+y^3+z^3\geq 3xyz x3+y3+z33xyz
∴ a + b + c 3 ≥ a b c 3 . \therefore\dfrac{a+b+c}{3}\geq\sqrt[3]{abc}. 3a+b+c3abc .

这个证明方法运用了公式 x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − y z − z x ) x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx),可谓十分巧妙。但是,这个方法并不具有一般性,如果换成证明四个数、五个数甚至更多数的均值不等式,就没有类似的公式了,我们需要一个一般的方法。

这里,我们发现,证明四个数的均值不等式,可以直接应用定理。

证明: a + b + c + d 4 ≥ 2 a b + 2 c d 4 = a b + c d 2 ≥ a b c d 4 \dfrac{a+b+c+d}{4}\geq\dfrac{2\sqrt{ab}+2\sqrt{cd}}{4}=\dfrac{\sqrt{ab}+\sqrt{cd}}{2}\geq\sqrt[4]{abcd} 4a+b+c+d42ab +2cd =2ab +cd 4abcd
上述不等式同时取等号的充要条件是
{ a = b , c = d , a b = c d . \begin{cases} a=b, \\ c=d,\\ \sqrt{ab}=\sqrt{cd}. \end{cases} a=b,c=d,ab =cd . a = b = c = d . a=b=c=d. a=b=c=d.
注: 这里连续使用两次二元均值不等式。

有了四个数的均值不等式,我们也可以再根据它得到八个数的均值不等式。具体证明过程如下:

证明: a 1 + a 2 + ⋯ + a 8 8 ≥ 4 a 1 a 2 a 3 a 4 4 ⋅ 4 a 5 a 6 a 7 a 8 4 8 = a 1 a 2 a 3 a 4 4 ⋅ a 5 a 6 a 7 a 8 4 2 ≥ 8 a 1 a 2 ⋯ a 8 8 . \dfrac{a_1+a_2+\cdots+a_8}{8}\geq\dfrac{4\sqrt[4]{a_1a_2a_3a_4}\cdot4\sqrt[4]{a_5a_6a_7a_8}}{8}=\dfrac{\sqrt[4]{a_1a_2a_3a_4}\cdot\sqrt[4]{a_5a_6a_7a_8}}{2}\geq8\sqrt[8]{a_1a_2\cdots a_8}. 8a1+a2++a8844a1a2a3a4 44a5a6a7a8 =24a1a2a3a4 4a5a6a7a8 88a1a2a8 .

我们发现,可以证明 n = 2 k n=2^k n=2k 的所有情况(使用数学归纳法可以很容易证明),从而再推广至 n n n 为大于等于 2 的所有自然数的一般情况。

这里,我们就来利用 n = 4 n=4 n=4 的情况,证明 n = 3 n=3 n=3 的情况,再进行一般化。
在证明 n 为非二次幂的情况时,我们需要平均数的思想,就拿 n = 3 n=3 n=3 举例。例如说原来班上有三个同学,成绩分别为 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3,那么他们成绩的算术平均值就为 a 1 + a 2 + a 3 3 \dfrac{a_1+a_2+a_3}{3} 3a1+a2+a3。这时又来了一个同学,我们希望加上他之后的算术平均值和原来成绩的算术平均值相同,那么让这个同学的成绩为 a 1 + a 2 + a 3 3 \dfrac{a_1+a_2+a_3}{3} 3a1+a2+a3 即可。
这种思想在一些题目中还会出现,那把这样一种思想运用到定理的证明中即可。

证明: n = 4 n=4 n=4 的情形中,取 a 4 = A 3 = a 1 + a 2 + a 3 3 . a_4=A_3=\dfrac{a_1+a_2+a_3}{3}. a4=A3=3a1+a2+a3.
此时 A 4 = a 1 + a 2 + a 3 + a 4 4 = A 3 ≥ 4 a 1 a 2 a 3 A 3 4 . A_4=\dfrac{a_1+a_2+a_3+a_4}{4}=A_3\geq4\sqrt[4]{a_1a_2a_3A_3}. A4=4a1+a2+a3+a4=A344a1a2a3A3 .
四次方, A 3 4 ≥ a 1 a 2 a 3 A 3 A_3^4\geq a_1a_2a_3A_3 A34a1a2a3A3
∴ A 3 3 ≥ a 1 a 2 a 3 \therefore A_3^3\geq a_1a_2a_3 A33a1a2a3
∴ A 3 ≥ a 1 a 2 a 3 3 \therefore A_3\geq\sqrt[3]{a_1a_2a_3} A33a1a2a3
A 3 ≥ G 3 . A_3\geq G_3. A3G3.

运用这种平均数的思想,我们就可以证明算术—几何平均不等式了。不过刚才的例子中我们选用的是算术平均数。如果不用算术平均数,使用几何平均数能不能证明呢?我们拿 n = 5 n=5 n=5 举例。

证明: n = 8 n=8 n=8 的情形中,取 a 6 = a 7 = a 8 = G 5 . a_6=a_7=a_8 = G_5. a6=a7=a8=G5.
此时 A 8 = a 1 + a 2 + ⋯ + a 5 + 3 G 5 8 ≥ G 8 = 8 a 1 a 2 ⋯ a 8 8 = 8 a 1 a 2 ⋯ a 5 G 5 3 8 = 8 G 5 5 ⋅ G 5 3 8 = G 5 A_8=\dfrac{a_1+a_2+\cdots+a_5+3G_5}{8}\geq G_8=8\sqrt[8]{a_1a_2\cdots a_8}=8\sqrt[8]{a_1a_2\cdots a_5 G_5^3}=8\sqrt[8]{G_5^5\cdot G_5^3}=G_5 A8=8a1+a2++a5+3G5G8=88a1a2a8 =88a1a2a5G53 =88G55G53 =G5.
∴ a 1 + a 2 + ⋯ + a 5 + 3 G 5 ≥ 8 G 5 \therefore a_1+a_2+\cdots+a_5+3G_5\geq 8G_5 a1+a2++a5+3G58G5
∴ a 1 + a 2 + ⋯ + a 5 5 ≥ G 5 \therefore \dfrac{a_1+a_2+\cdots+a_5}{5}\geq G_5 5a1+a2++a5G5
A 5 ≥ G 5 . A_5\geq G_5. A5G5.

使用几何平均数来证明算术—几何平均不等式也比较简单。在解题的过程中,我们也应该带着一题多解的思维,去探索不同的证明、求解方法。

下面是一个应用算术—几何平均不等式的例子,其中也渗透着解题的基本思想。

设整数 n ≥ 3 n\ge3 n3,正实数 a 2 , a 3 , ⋯   , a n a_2,a_3,\cdots,a_n a2,a3,,an 满足 a 2 a 3 ⋯ a n = 1. a_2a_3\cdots a_n=1. a2a3an=1. 证明: ( 1 + a 2 ) 2 ( 1 + a 3 ) 3 ⋯ ( 1 + a n ) n > n n . (1+a_2)^2(1+a_3)^3\cdots(1+a_n)^n>n^n. (1+a2)2(1+a3)3(1+an)n>nn.

运用均值不等式我们会发现, ( 1 + a 2 ) 2 ≥ ( 2 a 2 ) 2 = 2 2 ⋅ a 2 . (1+a_2)^2\ge(2\sqrt{a_2})^2=2^2\cdot a_2. (1+a2)2(2a2 )2=22a2. 但是 ( 1 + a 3 ) 3 ≥ ( 2 a 3 ) 3 = 2 3 ⋅ a 3 3 2 (1+a_3)^3\ge(2\sqrt{a_3})^3=2^3\cdot a_3^{\frac{3}{2}} (1+a3)3(2a3 )3=23a323 a 3 a_3 a3 的次数是分数,就无法使用题目中的条件 a 2 a 3 ⋯ a n = 1 a_2a_3\cdots a_n=1 a2a3an=1。因此我们希望运用均值不等式能使得 a 3 , a 4 , ⋯   , a n a_3,a_4,\cdots,a_n a3,a4,,an 的次数为 1. 1. 1.
首先是 ( 1 + a 3 ) 3 (1+a_3)^3 (1+a3)3,要使得立方后的次数为 1 1 1 a 3 a_3 a3 的次数就必须要在立方前等于 1 3 . \dfrac{1}{3}. 31. 很容易得出,将 1 1 1 分成 1 2 + 1 2 \dfrac{1}{2}+\dfrac{1}{2} 21+21,再使用均值不等式就可以了。

证明: ( 1 + a 2 ) 2 ≥ ( 2 a 2 ) 2 = 2 2 ⋅ a 2 . (1+a_2)^2\ge(2\sqrt{a_2})^2=2^2\cdot a_2. (1+a2)2(2a2 )2=22a2.
( 1 + a 3 ) 3 = ( 1 2 + 1 2 + a 3 ) 3 ≥ ( 3 1 2 2 a 3 3 ) 3 = 3 3 2 2 a 3 (1+a_3)^3=\Big(\dfrac{1}{2}+\dfrac{1}{2}+a_3\Big)^3\ge\bigg(3\sqrt[3]{\dfrac{1}{2^2}a_3}\bigg)^3=\dfrac{3^3}{2^2}a_3 (1+a3)3=(21+21+a3)3(33221a3 )3=2233a3
( 1 + a 4 ) 4 = ( 1 3 + 1 3 + 1 3 + a 4 ) 4 ≥ ( 4 1 3 3 a 4 4 ) 4 = 4 4 3 3 a 4 (1+a_4)^4=\Big(\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}+a_4\Big)^4\ge\bigg(4\sqrt[4]{\dfrac{1}{3^3}{a^4}}\bigg)^4=\dfrac{4^4}{3^3}a_4 (1+a4)4=(31+31+31+a4)4(44331a4 )4=3344a4
⋯ \cdots
( 1 + a n ) n = ( 1 n − 1 ⋅ n + a n ) n ≥ n n ( n − 1 ) n − 1 a n (1+a_n)^n=\Big(\dfrac{1}{n-1}\cdot n+a_n\Big)^n\ge\dfrac{n^n}{(n-1)^{n-1}}a_n (1+an)n=(n11n+an)n(n1)n1nnan
将上述 n − 1 n-1 n1 个算式相乘,得 ( 1 + a 2 ) 2 ( 1 + a 3 ) 3 ⋯ ( 1 + a n ) n ≥ n n ⋅ a 2 a 3 ⋯ a n = n n (1) (1+a_2)^2(1+a_3)^3\cdots(1+a_n)^n\ge n^n\cdot a_2a_3\cdots a_n=n^n\tag1 (1+a2)2(1+a3)3(1+an)nnna2a3an=nn(1)

做到这里,你认为已经做完了吗?
并没有!题目中给出的待证不等式给出的是 > > > 号,但我们目前只证明了 ≥ \ge ,一定要仔细看题。这说明,我们必须要证明等号成立的条件是取不到的。

( 1 ) (1) (1) 式等号成立 ⇔ \Leftrightarrow 上述算式全取等号
∴ a 2 = 1 , a 3 = 1 2 , ⋯   , a n = 1 n − 1 \therefore a_2=1,a_3=\dfrac{1}{2},\cdots,a_n=\dfrac{1}{n-1} a2=1,a3=21,,an=n11,与 a 2 a 3 ⋯ a n = 1 a_2a_3\cdots a_n=1 a2a3an=1 矛盾
( 1 + a 2 ) 2 ( 1 + a 3 ) 3 ⋯ ( 1 + a n ) n > n n . (1+a_2)^2(1+a_3)^3\cdots(1+a_n)^n>n^n. (1+a2)2(1+a3)3(1+an)n>nn.

在运用算术—几何平均不等式时,常常使用这种拆分的方法。


3. 柯西不等式

a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn是任意两个实数组,则有
( ∑ i = 1 n a i b i ) 2 ≤ ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) \Big(\displaystyle\sum^{n}_{i=1}{a_ib_i}\Big)^2\le\Big(\displaystyle\sum^{n}_{i=1}{a_i^2}\Big)\Big(\displaystyle\sum^{n}_{i=1}{b_i^2}\Big) (i=1naibi)2(i=1nai2)(i=1nbi2)
等号成立当且仅当 a i = k b i   ( k a_i=kb_i\ (k ai=kbi (k 为常数且 i = 1 , 2 , ⋯   , n ) i=1,2,\cdots,n) i=1,2,,n)


3.1 证明方法

证明方法有很多种。

3.1.1 代数方法

代数基本功强的同学,一步就能搞定。

证明: 右式 − - 左式 = ∑ 1 ≤ i < j ≤ n ( a i b j − a j b i ) 2 ≥ 0 . =\displaystyle\sum_{1\le i<j\le n}{\big(a_ib_j-a_jb_i\big)^2\ge 0}. =1i<jn(aibjajbi)20.


3.1.2 构造函数法

代数基本功没那么强的同学们(比如我) ,也有别的方法证明柯西不等式,那就是构造函数法证明。这个方法在我之前《构造函数解题》的文章中发过,现在再次给各位参考。

柯西不等式非常非常非常重要!!!

证明: a 1 2 + a 2 2 + ⋯ + a n 2 = 0 a_1^2+a_2^2+\cdots+a_n^2=0 a12+a22++an2=0,则 a 1 = a 2 = ⋯ = a n = 0 a_1=a_2=\cdots=a_n=0 a1=a2==an=0,此时原不等式显然成立.
a 1 2 + a 2 2 + ⋯ + a n 2 ≠ 0 a_1^2+a_2^2+\cdots+a_n^2\neq 0 a12+a22++an2=0,构造二次函数
f ( x ) = ( a 1 2 + a 2 2 + ⋯ + a n 2 ) x 2 − 2 ( a 1 b 1 + a 2 b 2 + ⋯ + a n b n ) x + ( b 1 2 + b 2 2 + ⋯ + b n 2 ) f(x)=(a_1^2+a_2^2+\cdots+a_n^2)x^2-2(a_1b_1+a_2b_2+\cdots+a_nb_n)x+(b_1^2+b_2^2+\cdots+b_n^2) f(x)=(a12+a22++an2)x22(a1b1+a2b2++anbn)x+(b12+b22++bn2)
  = ( a 1 x − b 1 ) 2 + ( a 2 x − b 2 ) 2 + ⋯ + ( a n x − b n ) 2 \quad \quad \ =(a_1x-b_1)^2+(a_2x-b_2)^2+\cdots+(a_nx-b_n)^2  =(a1xb1)2+(a2xb2)2++(anxbn)2
f ( x ) f(x) f(x) 是一条开口向上的抛物线,并且 f ( x ) ≥ 0 f(x)\geq 0 f(x)0 恒成立,所以
Δ = 4 ( a 1 b 1 + a 2 b 2 + ⋯ + a n b n ) 2 − 4 ( a 1 2 + a 2 2 + ⋯ + a n 2 ) ( b 1 2 + b 2 2 + ⋯ + b n 2 ) ≤ 0 \Delta=4(a_1b_1+a_2b_2+\cdots+a_nb_n)^2-4(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\leq 0 Δ=4(a1b1+a2b2++anbn)24(a12+a22++an2)(b12+b22++bn2)0
( a 1 2 + a 2 2 + ⋯ + a n 2 ) ( b 1 2 + b 2 2 + ⋯ + b n 2 ) ≥ ( a 1 b 1 + a 2 b 2 + ⋯ + a n b n ) 2 \quad (a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b_1+a_2b_2+\cdots+a_nb_n)^2 (a12+a22++an2)(b12+b22++bn2)(a1b1+a2b2++anbn)2
其中等号成立当且仅当 a i = k b i , i = 1 , 2 , ⋯ n , k a_i=kb_i,i=1,2,\cdots n,k ai=kbi,i=1,2,n,k 是某个常数时成立.


3.2 柯西不等式的变形形式
3.2.1 特殊情形

b = 1 b=1 b=1 时,原不等式变为 ( ∑ i = 1 n a i ) 2 ≤ n ( ∑ i = 1 n a i 2 ) . \Big(\displaystyle\sum^{n}_{i=1}{a_i}\Big)^2\le n\Big(\displaystyle\sum^{n}_{i=1}{a_i^2}\Big). (i=1nai)2n(i=1nai2).


3.2.2 柯西不等式的分数形式

x i = a i 2 ,   y i = b i 2   ( x , y ≥ 0 ) x_i=a_i^2,\ y_i=b_i^2\ (x,y\ge 0) xi=ai2, yi=bi2 (x,y0),则 ( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i ) ( ∑ i = 1 n y i ) . \Big(\displaystyle\sum^{n}_{i=1}{\sqrt{x_iy_i}}\Big)^2\le \Big(\sum^{n}_{i=1}{x_i}\Big)\Big(\sum^{n}_{i=1}{y_i}\Big). (i=1nxiyi )2(i=1nxi)(i=1nyi).柯西不等式的分数形式,则为
( ∑ i = 1 n y i ) 2 ≤ ( ∑ i = 1 n x i ) ( ∑ i = 1 n y i 2 x i ) . \Big(\displaystyle\sum^{n}_{i=1}{y_i}\Big)^2\le \Big(\sum^{n}_{i=1}{x_i}\Big)\Big(\sum^{n}_{i=1}{\dfrac{y_i^2}{x_i}}\Big). (i=1nyi)2(i=1nxi)(i=1nxiyi2).最常用的变形
( ∑ i = 1 n y i ) 2 ∑ i = 1 n x i ≤ ∑ i = 1 n y i 2 x i . \dfrac{\Big(\displaystyle\sum^{n}_{i=1}{y_i}\Big)^2}{\displaystyle\sum^{n}_{i=1}{x_i}}\le \displaystyle\sum^{n}_{i=1}\dfrac{y_i^2} {x_i}. i=1nxi(i=1nyi)2i=1nxiyi2.柯西不等式的分式形式是个非常重要的知识点,多来几道题巩固一下。

a i , b i ( i = 1 , 2 , ⋯   , n ) a_i,b_i(i=1,2,\cdots,n) ai,bi(i=1,2,,n) 都是正实数,且 ∑ i = 1 n a i = ∑ i = 1 n b i \displaystyle\sum_{i=1}^na_i=\sum_{i=1}^nb_i i=1nai=i=1nbi,求证: ∑ i = 1 n ( a i 2 a i + b i ) ≥ 1 2 ∑ i = 1 n a i . \displaystyle\sum_{i=1}^n\Big(\dfrac{a_i^2}{a_i+b_i}\Big)\ge\dfrac{1}{2}\sum_{i=1}^na_i. i=1n(ai+biai2)21i=1nai.

证明: ∑ i = 1 n ( a i 2 a i + b i ) ≥ ( ∑ i = 1 n a i ) 2 ∑ i = 1 n ( a i + b i ) = ∑ i = 1 n a i 2 2 ∑ i = 1 n a i = 1 2 ∑ i = 1 n a i . \displaystyle\sum_{i=1}^n\Big(\dfrac{a_i^2}{a_i+b_i}\Big)\ge\dfrac{\Big(\displaystyle\sum_{i=1}^na_i\Big)^2}{\displaystyle\sum_{i=1}^n(a_i+b_i)}=\dfrac{\displaystyle\sum_{i=1}^na_i^2}{2\displaystyle\sum_{i=1}^na_i}=\dfrac{1}{2}\sum_{i=1}^na_i. i=1n(ai+biai2)i=1n(ai+bi)(i=1nai)2=2i=1naii=1nai2=21i=1nai.

利用这个形式,再特殊一点的,就是 y 2 = 1 y^2=1 y2=1 的情况。我们又可以得到一个比较常用的不等式: 1 x + 1 y ≥ 4 x + y . \dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}. x1+y1x+y4.来看下面这题:

已知正数 x , y x,y x,y,求证: 1 x 4 + 1 y 4 ≥ 2 5 4 x + y 4 . \dfrac{1}{\sqrt[4]{x}}+\dfrac{1}{\sqrt[4]{y}}\ge\dfrac{2^{\frac{5}{4}}}{\sqrt[4]{x+y}}. 4x 1+4y 14x+y 245.

需要结合小结论 x + y ≤ 2 ( x + y ) \sqrt{x}+\sqrt{y}\le\sqrt{2(x+y)} x +y 2(x+y)

证明: 1 x 4 + 1 y 4 ≥ 4 x 4 + y 4 ≥ 4 2 ( x + y ) ≥ 4 2 2 ( x + y ) = 2 2 2 3 4 ⋅ x + y 4 = 2 5 4 x + y 4 . \dfrac{1}{\sqrt[4]{x}}+\dfrac{1}{\sqrt[4]{y}}\ge\dfrac{4}{\sqrt[4]{x}+\sqrt[4]{y}}\ge\dfrac{4}{\sqrt{2(\sqrt{x}+\sqrt{y})}}\ge\dfrac{4}{\sqrt{2\sqrt{2(x+y)}}}=\dfrac{2^2}{2^{\frac{3}{4}}\cdot\sqrt[4]{x+y}}=\dfrac{2^{\frac{5}{4}}}{\sqrt[4]{x+y}}. 4x 1+4y 14x +4y 42(x +y ) 422(x+y) 4=2434x+y 22=4x+y 245.

3.3 柯西不等式的推广形式

柯西不等式的分数形式还有推广形式,可以从二元推广为多元。

三元形式:
x i , y i , z i ≥ 0 x_i,y_i,z_i\ge 0 xi,yi,zi0,则 ( ∑ i = 1 n x i y i z i 3 ) 3 ≤ ( ∑ i = 1 n x i ) ( ∑ i = 1 n y i ) ( ∑ i = 1 n z i ) . \Big(\displaystyle\sum^{n}_{i=1}{\sqrt[3]{x_iy_iz_i}}\Big)^3\le \Big(\sum^{n}_{i=1}{x_i}\Big)\Big(\sum^{n}_{i=1}{y_i}\Big)\Big(\sum^{n}_{i=1}{z_i}\Big). (i=1n3xiyizi )3(i=1nxi)(i=1nyi)(i=1nzi).

x , y , z x,y,z x,y,z 是正实数,且 x y z = 1. xyz=1. xyz=1. 求证: x 3 ( 1 + y ) ( 1 + z ) + y 3 ( 1 + x ) ( 1 + z ) + z 3 ( 1 + x ) ( 1 + y ) ≥ 3 4 . \dfrac{x^3}{(1+y)(1+z)}+\dfrac{y^3}{(1+x)(1+z)}+\dfrac{z^3}{(1+x)(1+y)}\ge\dfrac{3}{4}. (1+y)(1+z)x3+(1+x)(1+z)y3+(1+x)(1+y)z343.

证明: ∑ x 3 ( 1 + y ) ( 1 + z ) ⋅ ∑ ( 1 + y ) ⋅ ∑ ( 1 + z ) ≥ ( ∑ x ) 3 \sum\dfrac{x^3}{(1+y)(1+z)}\cdot\sum(1+y)\cdot\sum(1+z)\ge(\sum x)^3 (1+y)(1+z)x3(1+y)(1+z)(x)3
∵ ∑ x = x + y + z ≥ 3 x y z 3 = 3. \because\sum x=x+y+z\ge3\sqrt[3]{xyz}=3. x=x+y+z33xyz =3.
∴ ∑ ( 1 + y ) = 3 + ∑ x ≤ 2 ∑ x \therefore\sum(1+y)=3+\sum x\le 2\sum x (1+y)=3+x2x
∴ ∑ x 3 ( 1 + y ) ( 1 + z ) ≥ ( ∑ x ) 3 ∑ ( 1 + y ) ∑ ( 1 + z ) ≥ ( ∑ x ) 3 ( 2 ∑ x ) ( 2 ∑ x ) = 1 4 ∑ x ≥ 3 4 . \therefore\sum\dfrac{x^3}{(1+y)(1+z)}\ge\dfrac{(\sum x)^3}{\sum(1+y)\sum(1+z)}\ge\dfrac{(\sum x)^3}{(2\sum x)(2\sum x)}=\dfrac{1}{4}\sum x\ge\dfrac{3}{4}. (1+y)(1+z)x3(1+y)(1+z)(x)3(2x)(2x)(x)3=41x43.

多元形式(这个不是分式形式):
( ∑ i = 1 n ∏ j = 1 n x i j ) n ≤ ∏ i = 1 n ∑ j = 1 n x i j n . \Big(\displaystyle\sum^{n}_{i=1}\prod_{j=1}^n{x_{i_j}}\Big)^n\le \prod_{i=1}^n\sum_{j=1}^nx_{i_j}^n. (i=1nj=1nxij)ni=1nj=1nxijn.

这个形式也是有一点点恶心了,大家自己看着办吧。

多元形式只是柯西不等式推广形式中的一种,还有很多其它的形式,不过已经超出了目前的知识范围,在这里就不再展开叙述了。


4. 平均不等式

设有几个正数 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,an,分别有
算术平均数: A n = 1 n ∑ i = 1 n a i A_n=\dfrac{1}{n}\displaystyle \sum_{i=1}^n a_i An=n1i=1nai

几何平均数: G n = ∏ i = 1 n a i n G_n=\sqrt[n]{\displaystyle \prod_{i=1}^n a_i} Gn=ni=1nai

调和平均数: H n = n ∑ i = 1 n 1 a i H_n=\dfrac{n}{\displaystyle \sum_{i=1}^n \dfrac{1}{a_i}} Hn=i=1nai1n

平方平均数: Q n = ∑ i = 1 n a i 2 n Q_n=\sqrt\dfrac{\displaystyle \sum_{i=1}^n a_i^2}{n} Qn=ni=1nai2
则这四个平均数有 H n ≤ G n ≤ A n ≤ Q n H_n\leq G_n \leq A_n \leq Q_n HnGnAnQn,其中等号成立当且仅当 a 1 = a 2 = ⋯ = a n a_1=a_2=\cdots=a_n a1=a2==an

图片来源于百度百科

平均不等式是算术—几何平均不等式的推广形式,也叫均值不等式,简记为“调几算方”。


接下来,我们就来证明这个不等式。

4.1 证明 An ≤ Qn

证明: a 1 + a 2 + ⋯ + a n n ≤ a 1 2 + a 2 2 + ⋯ + a n 2 n \dfrac{a_1+a_2+\cdots+a_n}{n}\le \sqrt{\dfrac{a_1^2+a_2^2+\cdots+a_n^2}{n}} na1+a2++anna12+a22++an2
⇔   ( a 1 + a 2 + ⋯ + a n ) 2 ≤ n ( a 1 2 + a 2 2 + ⋯ + a 3 2 ) \Leftrightarrow\ (a_1+a_2+\cdots+a_n)^2 \le n(a_1^2+a_2^2+\cdots+a_3^2)  (a1+a2++an)2n(a12+a22++a32)
这是柯西不等式中的特殊情形,所以命题得证。

4.2 证明 Hn ≤ Gn

证明: ∵ 1 H n = 1 a 1 + 1 a 2 + ⋯ + 1 a n n ≥ 1 a 1 ⋅ 1 a 2 ⋯ 1 a n n = 1 G n \because\dfrac{1}{H_n}=\dfrac{\dfrac{1}{a_1}+\dfrac{1}{a_2}+\cdots+\dfrac{1}{a_n}}{n}\ge \sqrt[n]{\dfrac{1}{a_1}\cdot\dfrac{1}{a_2}\cdots\dfrac{1}{a_n}}=\dfrac{1}{G_n} Hn1=na11+a21++an1na11a21an1 =Gn1 H n , G n > 0 H_n,G_n>0 Hn,Gn>0
∴ H n ≤ G n . \therefore H_n \le G_n. HnGn.

也是过于的简单了。


4.3 平均不等式的推广

没想到吧 😃
均值不等式还有推广形式!那就是——幂平均不等式
α > β \alpha > \beta α>β,则 ( ∑ i = 1 n a i α n ) 1 α ≥ ( ∑ i = 1 n a i β n ) 1 β \Big(\dfrac{\sum^n_{i=1}{a_i^{\alpha}}}{n}\Big)^{\frac{1}{\alpha}}\ge\Big(\dfrac{\sum^n_{i=1}{a_i^{\beta}}}{n}\Big)^{\frac{1}{\beta}} (ni=1naiα)α1(ni=1naiβ)β1 成立,当且仅当 a 1 = a 2 = ⋯ = a n a_1=a_2=\cdots=a_n a1=a2==an 时取等号。

幂平均不等式的证明在这里就不再展开,可以使用琴生不等式来证明。


后话

写太多了,再写的话就超过字数限制了,还有一部分内容将会在常用不等式(2)中呈现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值