双勾函数是什么?

写在前面

最近发现做啥题都离不开双勾函数,不管是初中还是高中,它都与我们形影不离。尤其是不等式里运用得特别多,因为它的值域特点和增减区间还是比较鲜明。双勾函数虽然在教材中并没有,但是考得特别频繁,今天就来说说什么是双勾函数。


一、双勾函数的定义

双勾函数(对勾函数)是一种类似于反比例函数的一般双曲函数,是形如 f ( x ) = a x + b x   ( a b > 0 ) f(x)=ax+\dfrac{b}{x}\ (ab>0) f(x)=ax+xb (ab0) 的函数。最常见的双勾函数是 f ( x ) = x + 1 x f(x)=x+\dfrac{1}{x} f(x)=x+x1。不过一定要注意, a , b a,b a,b 必须同号,如果异号就不是双勾函数。


二、双勾函数的性质

1.双勾函数的图象

双勾函数当 a , b a,b a,b 为正数时,大概是这样的:

双勾函数范例
当然,如果 a , b a,b a,b 都是负数,也可以是这样的:

双勾函数范例2

1.1 渐近线

双勾函数的图象以 y y y 轴和 y = a x y=ax y=ax 为渐近线。

1.2 转折点

a > 0 ,   b > 0 a>0,\ b>0 a>0, b>0,在第一象限内,转折点为 ( b a , 2 a b ) \bigg(\sqrt{\dfrac{b}{a}},2\sqrt{ab}\bigg) (ab ,2ab );在第三象限内,转折点为 ( − b a , − 2 a b ) \bigg(-\sqrt{\dfrac{b}{a}},-2\sqrt{ab}\bigg) (ab ,2ab )

a < 0 ,   b < 0 a<0,\ b<0 a<0, b<0,在第一象限内,转折点为 ( − b a , 2 a b ) \bigg(-\sqrt{\dfrac{b}{a}},2\sqrt{ab}\bigg) (ab ,2ab );在第三象限内,转折点为 ( b a , − 2 a b ) \bigg(\sqrt{\dfrac{b}{a}},-2\sqrt{ab}\bigg) (ab ,2ab )

转折点可以通过导数求得。
f ( x ) = a x + b x = a x + b x − 1 f(x)=ax+\dfrac{b}{x}=ax+bx^{-1} f(x)=ax+xb=ax+bx1,求导得 f ′ ( x ) = a − b x 2 f'(x)=a-\dfrac{b}{x^2} f(x)=ax2b
f ′ ( x ) = 0 f'(x)=0 f(x)=0,得 x = ± b a x=\pm\sqrt{\dfrac{b}{a}} x=±ab
所以函数 f ( x ) = a x + b x f(x)=ax+\dfrac{b}{x} f(x)=ax+xb 的转折点为 ( b a , 2 a b ) \bigg(\sqrt{\dfrac{b}{a}},2\sqrt{ab}\bigg) (ab ,2ab ) ( − b a , − 2 a b ) \bigg(-\sqrt{\dfrac{b}{a}},-2\sqrt{ab}\bigg) (ab ,2ab )


2. 双勾函数的定义域和值域

1. 定义域: { x ∣ x ≠ 0 } \{x |x\ne0\} {xx=0}

2. 值域: ( − ∞ , − a b ] ∪ [ a b , + ∞ ) \big(-\infty,-\sqrt{ab}\big] \cup \big[\sqrt{ab},+\infty\big) (,ab ][ab ,+)

求法很简单,大家可以自行推导。


3. 双勾函数的最值

  • a > 0 ,   b > 0 a>0,\ b>0 a>0, b>0
    • 当定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) 时, f ( x ) = a x + b x   ( a > 0 ,   b > 0 ) f(x)=ax+\dfrac{b}{x}\ (a>0,\ b>0) f(x)=ax+xb (a>0, b>0) x = b a x=\sqrt{\dfrac{b}{a}} x=ab 处取最小值 2 a b 2\sqrt{ab} 2ab
    • 当定义域为 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty,0)\cup(0,+\infty) (,0)(0,+) 时,函数无最值
    • 当定义域为 ( − ∞ , 0 ) (-\infty,0) (,0)时, f ( x ) = a x + b x   ( a > 0 ,   b > 0 ) f(x)=ax+\dfrac{b}{x}\ (a>0,\ b>0) f(x)=ax+xb (a>0, b>0) x = − b a x=-\sqrt{\dfrac{b}{a}} x=ab 处取最大值 − 2 a b -2\sqrt{ab} 2ab
  • a < 0 ,   b < 0 a<0,\ b<0 a<0, b<0
    • 当定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) 时, f ( x ) = a x + b x   ( a < 0 ,   b < 0 ) f(x)=ax+\dfrac{b}{x}\ (a<0,\ b<0) f(x)=ax+xb (a<0, b<0) x = b a x=\sqrt{\dfrac{b}{a}} x=ab 处取最大值 − 2 a b -2\sqrt{ab} 2ab
    • 当定义域为 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty,0)\cup(0,+\infty) (,0)(0,+) 时,函数无最值
    • 当定义域为 ( − ∞ , 0 ) (-\infty,0) (,0)时, f ( x ) = a x + b x   ( a < 0 ,   b < 0 ) f(x)=ax+\dfrac{b}{x}\ (a<0,\ b<0) f(x)=ax+xb (a<0, b<0) x = − b a x=-\sqrt{\dfrac{b}{a}} x=ab 处取最小值 2 a b 2\sqrt{ab} 2ab

双勾函数的最值,和均值不等式有着很紧密的联系。当 a > 0 ,   b > 0 a>0,\ b>0 a>0, b>0 时,在 x > 0 x>0 x>0 时的最值,也就是双勾函数的极小值,利用均值不等式就可以得到: a x + b x ≥ 2 a x ⋅ b x = 2 a b ax+\dfrac{b}{x} \ge 2\sqrt{ax\cdot\dfrac{b}{x}}=2\sqrt{ab} ax+xb2axxb =2ab 。当且仅当 a x = b x ax=\dfrac{b}{x} ax=xb x = b a x=\sqrt{\dfrac{b}{a}} x=ab 时取到极小值
同样地,由于双勾函数是奇函数,所以我们也能得到它的极大值,在 x = − b a x=-\sqrt{\dfrac{b}{a}} x=ab 处取到。
a < 0 ,   b < 0 a<0,\ b<0 a<0, b<0 的情况类似,就相当于在 x > 0 x>0 x>0 a ,   b a,\ b a, b 值不变的基础上关于 y y y 轴对称了一下,所以用 − x -x x 替换原来的 x x x 就行了。


3. 奇偶性和单调性

奇偶性: 奇函数
单调增区间: ( − ∞ , − b a ] \bigg(-\infty,-\sqrt{\dfrac{b}{a}}\bigg] (,ab ] [ b a , + ∞ ) \bigg[\sqrt{\dfrac{b}{a}},+\infty\bigg) [ab ,+)

单调减区间: ( − b a , 0 ] \bigg(-\sqrt{\dfrac{b}{a}},0\bigg] (ab ,0] [ 0 , b a ) \bigg[0,\sqrt{\dfrac{b}{a}}\bigg) [0,ab )


后话

其实,双勾函数的图象也是双曲线,当然是可以通过一个平面截圆锥得到的,是不是很惊讶?

参考资料:对勾函数(数学函数) - 百度百科

### 全选和反选功能概述 全选和反选是前端开发中常见的交互设计模式,主要用于批量选择或取消选择多个选项。这两种功能通常应用于表格、列表或多选框场景。 #### 功能定义 - **全选**:当用户触发全选操作时,所有可选项均会被设置为选定状态。这可以通过点击一个特定的控制按钮或复选框来完成[^2]。 - **反选**:反选是指切换当前的选择状态;即原本未被选中的项将会被选中,而已经处于选中状态的项则会变成未选中。这种机制让用户能够高效地调整多选项目的组合[^1]。 #### 操作方法 对于基于Vue.js的应用程序而言: - 实现全选/反选逻辑可以依赖于数据绑定特性以及事件处理器。例如,在`methods`节点下定义相应的事件处理函数如`changeAllState()`用于响应用户的输入变化并更新视图模型的状态[^3]。 ```javascript // Vue 组件内的 methods 定义 methods: { changeAllState() { this.items.forEach(item => item.selected = !this.allSelected); this.allSelected = !this.allSelected; } } ``` 上述代码片段展示了如何利用遍历数组的方式来同步各个子项的选择状态至父级控件(`allSelected`)所指示的新值上。每当调用此方法时,它不仅改变了单个条目的选取情况,同时也反转了整体“全选”的开关变量。 为了区分全选还是执行反向选择动作,则可以根据实际需求判断当前上下文中是否存在部分已勾选项,并据此决定采取何种行为路径。 在HTML模板方面,需确保存在一个代表全局选择状态的复选框以及其他关联的数据展示区域以便正确反映最新的UI变更结果。 ```html <!-- HTML 结构 --> <input type="checkbox" v-model="allSelected" @click="changeAllState"> 全选 / 反选<br> <ul> <li v-for="(item, index) in items" :key="index"> <input type="checkbox" v-model="item.selected">{{ item.name }} </li> </ul> ``` 这段简单的标记语言描述了一个带有全选/反选能力的表单项集合布局方式。其中`v-model`指令用来建立双向数据绑定关系,使得界面层面上的操作可以直接影响到背后存储着各元素是否被挑中的布尔属性集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值