一、什么是两次算?
两次算是一种数学思想,在数学问题中随处可见。例如,算一个长方形的面积,可以是长 × 宽,也可以是宽 × 长。列方程解应用题中,这种思想就更加清晰可见。
将同一个量从两个不同的角度计算两次,建立等量关系,这样的数学方法就叫做两次算。
二、从完全平方公式谈两次算
等面积法对于各位同学而言一定都不陌生,而完全平方公式的几何证明正是运用了这样一种思想。
还有大家也比较熟悉的勾股定理,也会用到等面积法。
等面积法其实就是两次算的一部分,不过“两次算”这种思想不仅仅应用于几何问题,下面讲点抽象的,就比如说集合之类。
三、典型例题
1. 集合、表格类问题
1-1 设
X
=
{
1
,
2
,
3
,
⋯
,
10
}
X=\{1,2,3,\cdots,10\}
X={1,2,3,⋯,10},
A
⊆
X
A\subseteq X
A⊆X,记
σ
(
A
)
=
∑
x
∈
A
x
\sigma(A)=\displaystyle\sum_{x\in A}x
σ(A)=x∈A∑x,记号
∑
A
⊆
X
\displaystyle\sum_{A\subseteq X}
A⊆X∑ 表示对
X
X
X 的一切子集作和,
σ
(
∅
)
=
0
\sigma(\varnothing)=0
σ(∅)=0,求:
(1)
∑
A
⊆
X
σ
(
A
)
\displaystyle\sum_{A\subseteq X}\sigma(A)
A⊆X∑σ(A)
f1:元素法
∀ i ∈ X \forall i\in X ∀i∈X, i i i 在 σ ( A ) \sigma(A) σ(A) 中有“贡献”,当且仅当 i ∈ A i\in A i∈A,满足条件的 A A A 有 2 9 2^9 29 个。
∴ ∑ A ⊆ X σ ( A ) = ∑ i ∈ X 2 9 ⋅ i = 2 9 × 55 = 28160. ∴\displaystyle\sum_{A\subseteq X}\sigma(A)=\sum_{i\in X}2^9\cdot i=2^9\times55=28160. ∴A⊆X∑σ(A)=i∈X∑29⋅i=29×55=28160.
f2:配对法
记 A ‾ = ∁ X A \overline{A}=\complement_XA A=∁XA
当 A A A 取遍 X X X 的所有子集时, A ‾ \overline{A} A 也取遍 X X X 的所有子集
∴ ∑ A ⊆ X σ ( A ) = ∑ A ⊆ X σ ( A ‾ ) = ∑ A ⊆ X [ σ ( A ) + σ ( A ‾ ) ] = 2 10 × 55 ∴\displaystyle\sum_{A\subseteq X}\sigma(A)=\displaystyle\sum_{A\subseteq X}\sigma(\overline{A})=\displaystyle\sum_{A\subseteq X}[\sigma(A)+\sigma(\overline{A})]=2^{10}\times55 ∴A⊆X∑σ(A)=A⊆X∑σ(A)=A⊆X∑[σ(A)+σ(A)]=210×55
∴ ∑ A ⊆ X σ ( A ) = 28160 ∴\displaystyle\sum_{A\subseteq X}\sigma(A)=28160 ∴A⊆X∑σ(A)=28160
(2) ∑ A , B ⊆ X σ ( A ∩ B ) \displaystyle\sum_{A,B\subseteq X}\sigma(A\cap B) A,B⊆X∑σ(A∩B)
和第一问类似,考虑 X X X 中每一个 i i i 对 A ∩ B A\cap B A∩B 的贡献,依然用元素法。
配对法较为繁琐,不过也可以得出相同结论。
∑ A , B ⊆ X σ ( A ∩ B ) = ∑ A , B ⊆ X σ ( A ‾ ∩ B ) \displaystyle\sum_{A,B\subseteq X}\sigma(A\cap B)=\sum_{A,B\subseteq X}\sigma(\overline A\cap B) A,B⊆X∑σ(A∩B)=A,B⊆X∑σ(A∩B)
∴ 2 ∑ A , B ⊆ X σ ( A ∩ B ) = ∑ A , B ⊆ X [ σ ( A ∩ B ) + σ ( A ‾ ∩ B ) ] = ∑ A , B ⊆ X σ [ ( A ∩ B ) ∪ ( A ‾ ∩ B ) ] = ∑ B ⊆ X σ ( B ) = 2 10 × 2 9 × 55 ∴\quad2\displaystyle\sum_{A,B\subseteq X}\sigma(A\cap B)\\=\sum_{A,B\subseteq X}[\sigma(A\cap B)+\sigma(\overline A\cap B)]\\=\sum_{A,B\subseteq X}\sigma[(A\cap B)\cup(\overline A\cap B)]\\=\sum_{B\subseteq X}\sigma(B)=2^{10}\times2^9\times55 ∴2A,B⊆X∑σ(A∩B)=A,B⊆X∑[σ(A∩B)+σ(A∩B)]=A,B⊆X∑σ[(A∩B)∪(A∩B)]=B⊆X∑σ(B)=210×29×55
∴ ∑ A , B ⊆ X σ ( A ∩ B ) = 2 18 × 55. ∴\displaystyle\sum_{A,B\subseteq X}\sigma(A\cap B)=2^{18}\times55. ∴A,B⊆X∑σ(A∩B)=218×55.
*需要用到集合的分配律: ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap(B\cup C) (A∩B)∪C=(A∪C)∩(B∪C)
1-2 设 X = { 1 , 2 , 3 , ⋯ , n } X=\{1,2,3,\cdots,n\} X={1,2,3,⋯,n}, ∀ A ⊆ X \forall A\subseteq X ∀A⊆X,赋予数 β A = { ∑ a ∈ A ( − 1 ) a a , A ≠ ∅ , 0 , A = ∅ . \beta_A=\begin{cases} \displaystyle\sum_{a\in A}(-1)^aa,A\ne\varnothing ,\\ 0,A=\varnothing. \\ \end{cases} βA=⎩ ⎨ ⎧a∈A∑(−1)aa,A=∅,0,A=∅.求 I = ∑ A ⊆ X β A . I=\displaystyle\sum_{A\subseteq X}\beta_A. I=A⊆X∑βA.
a a a 在 β A \beta_A βA 中有贡献 ( − 1 ) a a (-1)^aa (−1)aa 当且仅当 a ∈ A a\in A a∈A. 这样的集合 A A A 有 2 n − 1 2^{n-1} 2n−1 个
∴ a ∴a ∴a 在 I I I 中的贡献为 2 n − 1 ( − 1 ) a a 2^{n-1}(-1)^aa 2n−1(−1)aa
I = ∑ a ∈ X 2 n − 1 ( − 1 ) a a = 2 n − 1 [ − 1 + 2 − 3 + 4 − ⋯ + ( − 1 ) n n ] = { 2 n − 2 n , 2 ∣ n − 2 n − 2 ( n + 1 ) , 2 ∤ n . I=\displaystyle\sum_{a\in X}2^{n-1}(-1)^aa\\\ \ \ =2^{n-1}\big[-1+2-3+4-\cdots+(-1)^nn\big]\\\ \ \ =\begin{cases} 2^{n-2}n,2\mid n\\ -2^{n-2}(n+1),2\nmid n. \\ \end{cases} I=a∈X∑2n−1(−1)aa =2n−1[−1+2−3+4−⋯+(−1)nn] ={2n−2n,2∣n−2n−2(n+1),2∤n.
*当然也可以把结果合在一起,变成 2 n − 1 ( − 1 ) n [ n + 1 2 ] 2^{n-1}(-1)^n\bigg[\dfrac{n+1}{2}\bigg] 2n−1(−1)n[2n+1],中括号表示下取整。这样形式更美观,不过分开写也无所谓。
1-3 设 X = { 1 , 2 , 3 , ⋯ , 10 } X=\{1,2,3,\cdots,10\} X={1,2,3,⋯,10}, A ⊆ X A\subseteq X A⊆X 且 ∣ A ∣ ≥ 2 |A|\ge2 ∣A∣≥2,令 β A = ∑ { a , b } ∈ A a b \beta_A=\displaystyle\sum_{\{a,b\}\in A}ab βA={a,b}∈A∑ab,求 I = ∑ A ⊆ X β A . I=\displaystyle\sum_{A\subseteq X}\beta_A. I=A⊆X∑βA.
本题和上述两题也有些类似。
满足 { a , b } ∈ A \{a,b\}\in A {a,b}∈A 的集合 A A A 有 2 n − 2 2^{n-2} 2n−2 个
∴ I = 2 n − 2 ∑ { a , b } ∈ X , a ≠ b a b . ∴I=2^{n-2}\displaystyle\sum_{\{a,b\}\in X,a\ne b}ab. ∴I=2n−2{a,b}∈X,a=b∑ab.
怎么算这个和呢?我们可以列个表格:
这个和就是上述表格中所有数的和减去对角线的和。
I = 2 n − 2 [ ( 1 + 2 + ⋯ + n ) 2 − ( 1 2 + 2 2 + ⋯ + n 2 ) ] = 2 n − 2 [ n 2 ( n + 1 ) 2 4 − n ( n + 1 ) ( 2 n + 1 ) 6 ] I=2^{n-2}\big[(1+2+\cdots+n)^2-(1^2+2^2+\cdots+n^2)\big]\\\ \ \ =2^{n-2}\bigg[\dfrac{n^2(n+1)^2}{4}-\dfrac{n(n+1)(2n+1)}{6}\bigg] I=2n−2[(1+2+⋯+n)2−(12+22+⋯+n2)] =2n−2[4n2(n+1)2−6n(n+1)(2n+1)]
后面就不算了。
1-4 设 X = { 1 , 1 2 , ⋯ , 1 2 n − 1 } , A ⊆ X X=\bigg\{1,\dfrac{1}{2},\cdots,\dfrac{1}{2^{n-1}}\bigg\},A\subseteq X X={1,21,⋯,2n−11},A⊆X 且 ∣ A ∣ = 3 |A|=3 ∣A∣=3,比如 A = { a , b , c } A=\{a,b,c\} A={a,b,c},令 β A = a b + b c + c a \beta_A=ab+bc+ca βA=ab+bc+ca,求 I = ∑ A ⊆ X , ∣ A ∣ = 3 β A . I=\displaystyle\sum_{A\subseteq X,|A|=3}\beta_A. I=A⊆X,∣A∣=3∑βA.
为书写简便,将 X X X 写成 { x 1 , x 2 , ⋯ , x n } \{x_1,x_2,\cdots,x_n\} {x1,x2,⋯,xn}.
∑ A ⊆ X , ∣ A ∣ = 3 \displaystyle\sum_{A\subseteq X,|A|=3} A⊆X,∣A∣=3∑ 是 C n 3 C_n^3 Cn3 个 β A \beta_A βA 的和,每个 β A \beta_A βA 中有 3 3 3 项
所以 I I I 中总共有 3 C n 3 = n ( n − 1 ) ( n − 2 ) 2 3C_n^3=\dfrac{n(n-1)(n-2)}{2} 3Cn3=2n(n−1)(n−2) 项
每个 x i x j x_ix_j xixj 出现 ( n − 2 ) (n-2) (n−2) 次
∴ I = ( n − 2 ) ∑ 1 ≤ i < j ≤ n x i x j = ( n − 2 ) [ ( x 1 + x 2 + ⋯ + x n ) 2 − ( x 1 2 + x 2 2 + ⋯ + x n 2 ) 2 ] ∴I=(n-2)\displaystyle\sum_{1\le i<j\le n}x_ix_j\\\quad\ \ \ =(n-2)\bigg[\dfrac{(x_1+x_2+\cdots+x_n)^2-(x_1^2+x_2^2+\cdots+x_n^2)}{2}\bigg] ∴I=(n−2)1≤i<j≤n∑xixj =(n−2)[2(x1+x2+⋯+xn)2−(x12+x22+⋯+xn2)]
1-5 设 A 1 , A 2 , ⋯ , A m A_1,A_2,\cdots,A_m A1,A2,⋯,Am 为有限集 X X X 的 r r r 元子集,它们的交集元素个数不超过 k k k,即 ∣ A i ∩ A j ∣ ≤ k ( 1 ≤ i < j ≤ m ) |A_i\cap A_j|\le k(1\le i<j\le m) ∣Ai∩Aj∣≤k(1≤i<j≤m),那么 ∣ X ∣ ≥ r m ⋅ r r + ( m − 1 ) k . |X|\ge rm\cdot\dfrac{r}{r+(m-1)k}. ∣X∣≥rm⋅r+(m−1)kr.
令 X = { x 1 , x 2 , ⋯ , x n } X=\{x_1,x_2,\cdots,x_n\} X={x1,x2,⋯,xn}
如图,列一个 n n n 行 m m m 列的表格,
如果 x i ∈ A j x_i\in A_j xi∈Aj,在第 i i i 行第 j j j 列的交汇处填上 1 1 1,否则填上 0 0 0 。
∣ A i ∩ A j ∣ ≤ k ⇒ |A_i\cap A_j|\le k\Rightarrow ∣Ai∩Aj∣≤k⇒ 任取两列,位于同一行的两个 1 1 1 的对数(“两 1 1 1 对”)不超过 k k k
考察上述表格中“两 1 1 1 对”的总对数 S S S
一方面,根据列算, S ≤ C m 2 ⋅ k S\le C_m^2\cdot k S≤Cm2⋅k
另一方面,根据行算,设表格中第 i i i 行的个数为 t i t_i ti 个
第 i i i 行产生的“两 1 1 1 对” 为 C t i 2 C_{t_i}^2 Cti2 个,总对数为 ∑ i = 1 n C t i 2 \displaystyle\sum_{i=1}^nC_{t_i}^2 i=1∑nCti2
又由题意, ∣ A i ∣ = r ⇒ |A_i|=r\Rightarrow ∣Ai∣=r⇒ 每一列恰有 r r r 个 1 1 1
∴ ∑ i = 1 n t i = r m ∴\displaystyle\sum_{i=1}^nt_i=rm ∴i=1∑nti=rm
C m 2 ⋅ k ≥ S = ∑ i = 1 n t i ( t i − 1 ) 2 = 1 2 ∑ i = 1 n t i 2 − 1 2 r m ≥ 1 2 ( ∑ i = 1 n t i ) 2 n − 1 2 r m = r 2 m 2 2 n − r m 2 C_m^2\cdot k\ge S=\displaystyle\sum_{i=1}^n\dfrac{t_i(t_i-1)}{2}\\=\dfrac{1}{2}\sum_{i=1}^nt_i^2-\dfrac{1}{2}rm\\\ge\dfrac{1}{2}\dfrac{\bigg(\displaystyle\sum_{i=1}^nt_i\bigg)^2}{n}-\dfrac{1}{2}rm\\=\dfrac{r^2m^2}{2n}-\dfrac{rm}{2} Cm2⋅k≥S=i=1∑n2ti(ti−1)=21i=1∑nti2−21rm≥21n(i=1∑nti)2−21rm=2nr2m2−2rm
∴ n ≥ r 2 m r + ( m − 1 ) k . ∴n\ge\dfrac{r^2m}{r+(m-1)k}. ∴n≥r+(m−1)kr2m.
*其实,组合数可以这样规定:
C
n
m
=
{
n
!
m
!
(
n
−
m
)
!
,
n
≥
m
,
0
,
n
<
m
.
C_n^m=\begin{cases} \dfrac{n!}{m!(n-m)!},n\ge m,\\ 0,n<m. \\ \end{cases}
Cnm=⎩
⎨
⎧m!(n−m)!n!,n≥m,0,n<m.
很多关于集合的题目都会用到表格,填 0 或 1 表示元素与集合的关系,或者是对一个数表通过不同方式的计算得到需要的结果。
2. 图形问题
2-1 下面我们来看一道稍微具象点的问题。
试证明每个凸 2 n 2n 2n 边形中总有一条对角线不平行于任意一条边。
A = { 边 } , B = { 对角线 } A=\{边\},B=\{对角线\} A={边},B={对角线}
由题意 ∣ A ∣ = 2 n , ∣ B ∣ = C 2 n 2 − 2 n = n ( 2 n − 3 ) |A|=2n,|B|=C_{2n}^2-2n=n(2n-3) ∣A∣=2n,∣B∣=C2n2−2n=n(2n−3)
设 C = { ( a , b ) ∣ a ∈ A , b ∈ B , a ∥ b } C=\{(a,b)|a\in A,b\in B,a\parallel b\} C={(a,b)∣a∈A,b∈B,a∥b}
固定 a ∈ A a\in A a∈A,与 a a a 平行的对角线 b b b 至多有 ( n − 2 ) (n-2) (n−2) 条
∴ ∣ C ∣ ≤ 2 n ( n − 2 ) = n ( 2 n − 4 ) < ∣ B ∣ ∴|C|\le 2n(n-2)=n(2n-4)<|B| ∴∣C∣≤2n(n−2)=n(2n−4)<∣B∣
故存在对角线不与任一条边平行。
3. 组合恒等式问题
两次算的思想也同样可以运用于组合式的证明。组合恒等式通常一边形式简单,一边形式较为复杂。在证明这种式子时,会运用一种“无中生有”的基本想法,构造一个情景用两种繁简不同的方法计算相同的结果,这样就能得到需要证明的组合数等式。
C n k + C n k + 1 = C n + 1 k + 1 C_n^k+C_n^{k+1}=C_{n+1}^{k+1} Cnk+Cnk+1=Cn+1k+1 这个常用的组合恒等式就可以通过“无中生有”的方法证明出来。
我们可以从不同角度,计算出从 ( n + 1 ) (n+1) (n+1) 个小球中选出 ( k + 1 ) (k+1) (k+1) 个小球的选法。
一方面,根据组合数的定义,可知应为
C
n
+
1
k
+
1
C_{n+1}^{k+1}
Cn+1k+1 种选法。
另一方面,通过选出的小球是否包含某个特定的小球这样的分类方式,可以分为两类。
1° 包括这个特定小球,那么只需要从剩下
n
n
n 个球中选出
k
k
k 个。
2° 不包括,就从剩下
n
n
n 个球中选出
(
k
+
1
)
(k+1)
(k+1) 个。
加法原理得到共有
C
n
k
+
C
n
k
+
1
C_n^k+C_{n}^{k+1}
Cnk+Cnk+1 种选法。
所以
C
n
k
+
C
n
k
+
1
=
C
n
+
1
k
+
1
C_n^k+C_n^{k+1}=C_{n+1}^{k+1}
Cnk+Cnk+1=Cn+1k+1。
下面我们来看看:
3-1 试证明下面的组合数等式:
∑
k
=
0
n
−
m
C
n
m
+
k
C
m
+
k
m
=
2
n
−
m
C
n
m
(
n
≥
m
)
.
\displaystyle\sum_{k=0}^{n-m}C_n^{m+k}C_{m+k}^m=2^{n-m}C_n^m(n\ge m).
k=0∑n−mCnm+kCm+km=2n−mCnm(n≥m).
我们可以编这样一个故事:
总共有 n n n 位运动员,要选 m m m 个正式队员参加奥运会, ( n − m ) (n-m) (n−m) 位落选的运动员可以自由选择是否作为代表团的一个成员去看奥运会。那么奥运代表团一共有多少种不同的组成方式?
一方面,我们先选出正式队员计算
那么所求为 C n m ⋅ 2 n − m C_n^m\cdot2^{n-m} Cnm⋅2n−m.
另一方面,我们按照代表团的人数分类,总共 ( n + k ) (n+k) (n+k) 人,其中 k = 0 , 1 , ⋯ , n − m . k=0,1,\cdots,n-m. k=0,1,⋯,n−m.
先选代表团,再选正式队员,所求为 ∑ k = 0 n − m C n m + k C m + k m . \displaystyle\sum_{k=0}^{n-m}C_n^{m+k}C_{m+k}^m. k=0∑n−mCnm+kCm+km.
所以 ∑ k = 0 n − m C n m + k C m + k m = 2 n − m C n m ( n ≥ m ) . \displaystyle\sum_{k=0}^{n-m}C_n^{m+k}C_{m+k}^m=2^{n-m}C_n^m(n\ge m). k=0∑n−mCnm+kCm+km=2n−mCnm(n≥m).
3-2 试证明下面的组合数等式:
∑
i
=
0
p
C
m
i
C
m
−
i
p
−
i
C
n
−
p
p
−
i
=
C
m
p
C
n
p
(
n
>
m
>
p
≥
1
)
.
\displaystyle\sum_{i=0}^pC_m^iC_{m-i}^{p-i}C_{n-p}^{p-i}=C_m^pC_n^p(n>m>p\ge1).
i=0∑pCmiCm−ip−iCn−pp−i=CmpCnp(n>m>p≥1).
设甲班有 m m m 人,乙班有 n n n 人,各选 p p p 人参加运动会,不同的选择方式有多少种?
一方面,甲班乙班分别选,易知是 C m p C n p C_m^pC_n^p CmpCnp
另一方面,我们研究甲班与乙班选出的人的学号,设有 i i i 人学号相同,其中 i = 0 , 1 , ⋯ , p . i=0,1,\cdots,p. i=0,1,⋯,p.
由于甲班人数更少,所以先选出甲班学号相同的人,有 C m i C_m^i Cmi 中情况,乙班学号相同的人就随之确定了。
再选出甲班另外的人,为 C m − i p − i C_{m-i}^{p-i} Cm−ip−i
最后再选出乙班剩下的人,这里需要去掉甲班已选人的学号所对应的人,为 C n − p p − i . C_{n-p}^{p-i}. Cn−pp−i.
所以 ∑ i = 0 p C m i C m − i p − i C n − p p − i = C m p C n p ( n > m > p ≥ 1 ) . \displaystyle\sum_{i=0}^pC_m^iC_{m-i}^{p-i}C_{n-p}^{p-i}=C_m^pC_n^p(n>m>p\ge1). i=0∑pCmiCm−ip−iCn−pp−i=CmpCnp(n>m>p≥1).
4. 其它问题
4-1 设 ( a 1 , a 2 , ⋯ , a n ) (a_1,a_2,\cdots,a_n) (a1,a2,⋯,an) 是 1 , 2 , ⋯ , n 1,2,\cdots,n 1,2,⋯,n 的任一排列,求 ( a 1 − a 2 ) 2 + ( a 2 − a 3 ) 2 + ⋯ + ( a n − 1 − a n ) 2 (a_1-a_2)^2+(a_2-a_3)^2+\cdots+(a_{n-1}-a_n)^2 (a1−a2)2+(a2−a3)2+⋯+(an−1−an)2 的平均值 A A A,即求 A = 1 n ! ∑ ( a 1 , a 2 , ⋯ , a n ) ∑ i = 1 n − 1 ( a i − a i + 1 ) 2 A=\dfrac{1}{n!}\displaystyle\sum_{(a_1,a_2,\cdots,a_n)}\sum_{i=1}^{n-1}(a_i-a_{i+1})^2 A=n!1(a1,a2,⋯,an)∑i=1∑n−1(ai−ai+1)2
对于 1 ≤ i , j ≤ n 1\le i,j\le n 1≤i,j≤n, i ≠ j i\ne j i=j
( i − j ) 2 (i-j)^2 (i−j)2 在 ∑ ( a 1 , a 2 , ⋯ , a n ) ∑ i = 1 n − 1 ( a i − i + 1 ) 2 \displaystyle\sum_{(a_1,a_2,\cdots,a_n)}\sum_{i=1}^{n-1}(a_i-{i+1})^2 (a1,a2,⋯,an)∑i=1∑n−1(ai−i+1)2 中出现 ( n − 1 ) ! (n-1)! (n−1)! 次这里不考虑 i , j i,j i,j 的顺序,也就是说 ( i − j ) 2 (i-j)^2 (i−j)2 与 ( j − i ) 2 (j-i)^2 (j−i)2 只算一种情况。我们用捆绑法,把 i , j i,j i,j 视为一个元素,与另外 ( n − 2 ) (n-2) (n−2) 个数排列,就是 A n − 1 n − 1 = ( n − 1 ) ! A_{n-1}^{n-1}=(n-1)! An−1n−1=(n−1)! 次。
太久不写排列数了(有点生疏)。∴ ∑ ( a 1 , a 2 , ⋯ , a n ) ∑ i = 1 n − 1 ( a i − a i + 1 ) 2 = ( n − 1 ) ! ∑ 1 ≤ i , j ≤ n , i ≠ j ( i − j ) 2 ∴\displaystyle\sum_{(a_1,a_2,\cdots,a_n)}\sum_{i=1}^{n-1}(a_i-a_{i+1})^2=(n-1)!\sum_{1\le i,j\le n,\ i\ne j}(i-j)^2 ∴(a1,a2,⋯,an)∑i=1∑n−1(ai−ai+1)2=(n−1)!1≤i,j≤n, i=j∑(i−j)2
A = 1 n ∑ i ≤ i , j ≤ n ( i − j ) 2 = 1 n ∑ i = 1 n ∑ j = 1 n ( i 2 − 2 i j + j 2 ) = 1 n ( 2 ∑ i = 1 n n i 2 − 2 ∑ i = 1 n i ∑ j = 1 n j ) = 2 × n ( n + 1 ) ( 2 n + 1 ) 6 − 2 n ⋅ [ n ( n + 1 ) 2 ] 2 = n ( n + 1 ) ( n − 1 ) 6 . A=\dfrac{1}{n}\displaystyle\sum_{i\le i,j\le n}(i-j)^2\\\quad=\dfrac{1}{n}\sum_{i=1}^n\sum_{j=1}^n(i^2-2ij+j^2)\\\quad=\dfrac{1}{n}(2\sum_{i=1}^nni^2-2\sum_{i=1}^ni\sum_{j=1}^nj)\\\quad=2\times\dfrac{n(n+1)(2n+1)}{6}-\dfrac{2}{n}\cdot\bigg[\dfrac{n(n+1)}{2}\bigg]^2\\\quad=\dfrac{n(n+1)(n-1)}{6}. A=n1i≤i,j≤n∑(i−j)2=n1i=1∑nj=1∑n(i2−2ij+j2)=n1(2i=1∑nni2−2i=1∑nij=1∑nj)=2×6n(n+1)(2n+1)−n2⋅[2n(n+1)]2=6n(n+1)(n−1).
在一个算式中,如果各个元素地位相等,可以通过某部分入手,求出整个算式的值。
例如这道题目,整个算式
A
A
A 都围绕着
(
a
i
−
a
i
+
1
)
2
(a_i-a_{i+1})^2
(ai−ai+1)2 这个类似于通项的部分求和,只要确定这个式子和
i
,
j
i,j
i,j 的关系就可以求出
A
A
A 的值。
很多时候解这一类的题目都会涉及到某个式子出现几次的问题,比如说上面的 1-4,我们怎么求
β
A
\beta_A
βA 的和,就是通过
β
A
\beta_A
βA 中形如
x
i
x
j
x_ix_j
xixj 的式子(也就对应着
a
b
,
b
c
,
c
a
ab,bc,ca
ab,bc,ca)的个数来计算的。
还要再次说明,一般计算某个式子出现几次,都是在地位对等的条件下。所以题目中给出的式子具有这样的条件时,可以考虑这样做。
后话
不是,真的不要再把
∅
\varnothing
∅ 打成
ϕ
\phi
ϕ 了。
个人觉得 \varnothing 打出来比 \emptyset 好看。
补集符号不是直接一个 C,应该是 \complement,估计很多人都不知道。