范数
有时我们需要衡量一个向量的大小。在机器学习中,我们经常使用被称为范数
(norm)
(
n
o
r
m
)
的函数衡量向量大小。形式上,
LP
L
P
范数定义如下:
其中 p∈R,p≥1 p ∈ R , p ≥ 1 。
范数(包括 LP L P 范数)是将向量映射到非负值函数。直观上来说,向量 x x 的范数是衡量从原点到点 x x 的距离。更严格地说,范数是满足下列性质的任意函数:
-
- f(x+y)≤f(x)+f(y)(三角不等式(triangle inequality)) f ( x + y ) ≤ f ( x ) + f ( y ) ( 三 角 不 等 式 ( t r i a n g l e i n e q u a l i t y ) )
-
- ∀α∈R,f(αx)=|α|f(x) ∀ α ∈ R , f ( α x ) = | α | f ( x )
向量范数
L0 L 0 范数
有时候我们会统计向量中非零元素的个数来衡量向量的大小。有些作者将这种函数称为 “ L0 L 0 范数’’,但是这个术语在数学意义上是不对的。向量的非零元素的数目不是范数,因为对标量放缩 α α 倍不会改变该向量非零的数目。因此, 范数经常作为表示非零元素数目的替代函数。
L1 L 1 范数
L1 L 1 范数是我们经常见到的一种范数,它的定义如下:
||x||1=∑i|xi| | | x | | 1 = ∑ i | x i |
表示向量 x x 中非零元素的绝对值之和。 matlab函数如下:norm(x,1);
范数
L2 L 2 范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种 L2 L 2 范数,它的定义如下:
||x||2=∑ix2i−−−−−√ | | x | | 2 = ∑ i x i 2
Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方。 matlab函数如下:norm(x,2);
L∞ L ∞ 范数
||x||∞=maxi|xi| | | x | | ∞ = max i | x i |即所有向量元素绝对值中的最大值,matlab调用函数:
norm(x,inf);
L−∞ L − ∞ 范数
||x||−∞=mini|xi| | | x | | − ∞ = min i | x i |即所有向量元素绝对值中的最小值,matlab调用函数:
norm(x,-inf);
Lp L p 范数
Lp=∑1nxpi−−−−−√p,x=(x1,x2,⋯,xn) L p = ∑ 1 n x i p p , x = ( x 1 , x 2 , ⋯ , x n )即向量元素绝对值的p次方和的1/p次幂,matlab调用函数:
norm(x, p);
上图表示了p从无穷到0变化时,三维空间中到原点的距离(范数)为1的点构成的图形的变化情况。以常见的 L2 L 2 范数 (p=2) ( p = 2 ) 为例,此时的范数也即欧氏距离,空间中到原点的欧氏距离为1的点构成了一个球面。矩阵范数
L1 L 1 范数
||A||1=maxj∑i=1m|ai,j| | | A | | 1 = max j ∑ i = 1 m | a i , j |列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数:
norm(A, 1);
L2 L 2 范数
||A||2=λ1−−√ | | A | | 2 = λ 1其中 λ∈ATA λ ∈ A T A 的最大特征值。
谱范数,即 ATA A T A 矩阵的最大特征值的开平方。matlab调用函数:
norm(A, 2);
L∞ L ∞ 范数
||A||∞=maxi∑j=1N|ai,j| | | A | | ∞ = max i ∑ j = 1 N | a i , j |行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数:
norm(A, inf);
LF L F 范数
||L||F=(∑i=1m∑j=1n|ai,j|2)12 | | L | | F = ( ∑ i = 1 m ∑ j = 1 n | a i , j | 2 ) 1 2Frobenius 范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数:
norm(A,'fro');
L∗ L ∗ 核范数
||A||∗=∑i=1nλi | | A | | ∗ = ∑ i = 1 n λ i其中, λi λ i 是 A A <script type="math/tex" id="MathJax-Element-56">A</script>的奇异值。
所以核范数是奇异值之和。