范数是距离在向量和矩阵上的推广,在研究收敛性、判断矩阵非奇异等方面有广泛应用。
本节包括以下内容:
(1)向量范数;
(2)矩阵范数;
(3)从属范数;
(4)谱半径;
(5)矩阵的非奇异条件。
1 向量范数
从向量到实数的映射/函数。
定义
(1)条件:非负性、齐次性、三角不等式(
∥x+y∥≤∥x∥+∥y∥
);
(2)敛散:向量序列
{x(k)}
收敛,即每个分量在
k→∞
时都有极限
ξi
,否则发散。
性质
(1)连续型:可证
∥∥x∥−∥y∥∥≤∥x−y∥
,继而可证向量范数是其分量的连续函数;
(2)等价性:任意范数,存在
c1,c2
使
c1∥x∥b≤∥x∥a≤c2∥x∥b
成立。有限维线性空间上的不同范数是等价的;
(3)等价性的意义:向量范数大小可能不同,但在考虑向量序列收敛问题时,却表现出明显的一致性(向量序列
{x(k)}
收敛到
x
的充要条件是,对任意一种范数 序列
常用范数
(1)p-范数(1-范数、2-范数等):
(2)无穷范数:
(3)加权范数(椭圆范数): ∥x∥A=(xTAx)1/2 ,其中 A 是任意一个对称正定矩阵。注意
2 矩阵范数
从(复)矩阵到实数的映射/函数。
定义
(1)广义矩阵范数:非负性、齐次性、三角不等式
∥A+B∥≤∥A∥+∥B∥
;
(2)矩阵范数:除以上三条件外,满足相容性
∥AB∥≤∥A∥∥B∥
(因此
∥Ak∥≤∥A∥k
)。
性质
(1)判断收敛:
A(k)→A
的充要条件是
∥A(k)−A∥→0
;
(2)连续型:可证
∥∥A∥−∥B∥∥≤∥A−B∥
,继而可证连续性,即
A(k)→A
可推出
∥A(k)∥→∥A∥
(因此,当
∥A∥→0
时,
A→O
);
(3)等价性:满足定义四条件的矩阵范数都是等价的;
(4)
F−
范数的性质:
∥PA∥F=∥A_F=∥AQ∥F
,其中
P,Q
为酉矩阵。
常用范数
(1)
∥⋅∥m1
:所有元素绝对值(模)之和
∑i,j∥aij∥
;
(2)
∥⋅∥m2
:所有元素平方和开根号
(∑ij∥aij∥2)1/2)=(tr(AHA))1/2
,等同于
∥⋅∥F
;
(3)
∥⋅∥m∞
:所有元素绝对值(模)最大值乘以
n
,
(4)
∥⋅∥1
:各列元素绝对值(模)之和最大者
maxj∑mi=1∥aij∥
.
(5)
∥⋅∥2
:最大奇异值
λ1‾‾‾√
,其中
λ1
为
AHA
的最大特征值;
(6)
∥⋅∥∞
:各行元素绝对值(模)之和最大者
maxi∑nj=1∥aij∥.
.
(7)
∥⋅∥F
:同
∥⋅∥m2
,为
(∑ij∥aij∥2)1/2)=(tr(AHA))1/2
.
3 矩阵与向量范数的相容性
定义
(1)矩阵与向量范数的相容性:若
∥Ax∥V≤∥A∥M∥x∥V (∀A∈Cm×n, ∀x∈Cn)
,则称矩阵范数
∥⋅∥M
与向量范数
∥⋅∥V
是相容的;
(2)构造相容范数:从属范数(由向量范数导出的矩阵范数,
∥A∥=max∥x∥=1∥Ax∥
,也可以等价定义为
∥A∥=maxx∥Ax∥∥x∥
)。
定理
(1)F-范数:设
P, Q
为酉矩阵,则
∥PA∥F=∥A∥F=∥AQ∥F
;
(2)F-范数:与
A
酉(正交)相似的矩阵的 F-范数是相同的;
(3)构造相容范数:
常用范数
从属范数:
(1)列和范数:
(2)谱范数:
∥A∥1=max∥x∥1=2∥Ax∥2=λ1‾‾‾√
(其中
λ1
为
AHA
的最大特征值);
(3)行和范数:
∥A∥∞=max∥x∥∞=1∥Ax∥∞=maxi∑nj=1∥aij∥
(每行元素绝对值/模和最大者);
(4)Frobenius 范数(F-范数):
∥A∥F=(∑i∑j∥aij∥2)1/2=(tr(AHA))1/2
(所有元素平方和开根号)。
4 谱半径
定义
(1)谱半径: ρ(A)=maxi∥λi∥ (注意绝对值/模);
定理
(1)对任意矩阵范数,有
ρ(A)≤∥A∥
(证:用
∥λx∥V=∥Ax∥M≤∥A∥∥x∥
);
(2)
ρ(Ak)=[ρ(A)]k
(证:用
P−1AP=J
);
(3)谱范数:
∥A∥2=ρ1/2(AHA)=ρ1/2(AAH)
。当
A
是 Hermite 矩阵时,
(4)对任意正数
ϵ
,一定存在某种矩阵范数使得
∥A∥M≤ρ(A)+ϵ
。
5 矩阵的非奇异条件
(1)
A∈Cn×n
,若存在某种范数使
∥A∥<1
,则矩阵
I−A
非奇异,且
∥(I−A)−1∥≤∥I∥1−∥A∥
;
(2)
A∈Cn×n
,若存在某种范数使
∥A∥<1
,则
∥I−(I−A)−1∥≤∥A∥1−∥A∥
(
∥A∥
很小,即
A→O
时,
I−A
与
I
<script type="math/tex" id="MathJax-Element-243">I</script> 的逼近程度)。