pandas中DataFrame修改index、columns名的方法

一般常用的有两个方法:
1、使用DataFrame.index = [newName],DataFrame.columns = [newName],这两种方法可以轻松实现。
2、使用rename方法(推荐):
DataFrame.rename(mapper = None,index = None,columns = None,axis = None,copy = True,inplace = False,level = None )
参数介绍:
mapper,index,columns:可以任选其一使用,可以是将index和columns结合使用。index和column直接传入mapper或者字典的形式。
axis:int或str,与mapper配合使用。可以是轴名称(‘index’,‘columns’)或数字(0,1)。默认为’index’。
copy:boolean,默认为True,是否复制基础数据。
inplace:布尔值,默认为False,是否返回新的DataFrame。如果为True,则忽略复制值。

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

df1 = DataFrame(np.arange(9).reshape(3, 3), index = ['bj', 'sh', 'gz'], columns=['a', 'b', 'c'])
print(df1)
'''
    a  b  c
bj  0  1  2
sh  3  4  5
gz  6  7  8
'''

# 修改 df1 的 index
print(df1.index) # 可以打印出print的值,同时也可以为其赋值
df1.index = Series(['beijing', 'shanghai', 'guangzhou'])
print(df1)
'''
           a  b  c
beijing    0  1  2
shanghai   3  4  5
guangzhou  6  7  8
'''

# 可以使用map方法进行映射,map的使用方法就和python中的map几乎一样
print(df1.index.map(str.upper)) # Index(['BEIJING', 'SHANGHAI', 'GUANGZHOU'], dtype='object')

print(df1) # 结果 并未改变, 上面只是返回一个 dataframe 而已
'''
           a  b  c
beijing    0  1  2
shanghai   3  4  5
guangzhou  6  7  8
'''

# 如果 需要 改变的话,可以如下: 另外赋值给一个变量
df1.index = df1.index.map(str.upper)
print(df1) # 这样 就 改变了
'''
           a  b  c
BEIJING    0  1  2
SHANGHAI   3  4  5
GUANGZHOU  6  7  8
'''

# 更快捷的 方法 使用 rename,可以分别为 index 和 column 来指定值
# 使用 map 的方式来赋值
df2 = df1.rename(index=str.lower, columns=str.upper) # 这种方法 照样是产生一个新的 dataframe
print(df2)
''' 可以很轻松的 修改 dataframe 的 index 和 columns
           A  B  C
beijing    0  1  2
shanghai   3  4  5
guangzhou  6  7  8
'''

# 同时,rename 还可以传入字典
df3 = df2.rename(index={'beijing':'bj'}, columns = {'A':'aa'}) # 为某个 index 单独修改名称
print(df3) #
'''
           aa  B  C
bj          0  1  2
shanghai    3  4  5
guangzhou   6  7  8
'''

# 自定义map函数
def test_map(x):
    return x+'_ABC'

print(df1.index.map(test_map))
# 输出 Index(['BEIJING_ABC', 'SHANGHAI_ABC', 'GUANGZHOU_ABC'], dtype='object')

print(df1.rename(index=test_map))
'''
               a  b  c
BEIJING_ABC    0  1  2
SHANGHAI_ABC   3  4  5
GUANGZHOU_ABC  6  7  8
'''
### 更改或重置 Pandas DataFrame 的索引 在 Pandas 中更改或重置 DataFrame 的索引可以通过多种方法实现。 #### 方法一:使用 `reset_index` 函数 当需要将当前的索引丢弃并创建一个新的默认整数索引时,可以使用 `reset_index()` 函数。如果希望不保留原来的索引作为列,则需设置参数 `drop=True`[^1]。 ```python import pandas as pd import numpy as np # 创建带有自定义索引的数据框 df = pd.DataFrame(np.arange(20).reshape((5, 4)), columns=list('abcd'), index=[10, 20, 30, 40, 50]) print("原始数据帧:") print(df) # 使用 reset_index 并丢弃旧索引 new_df = df.reset_index(drop=True) print("\n重置后的数据帧:") print(new_df) ``` #### 方法二:通过赋值新索引列表给 `df.index` 可以直接向 `DataFrame` 的 `.index` 属性分配一个新的序列来替代现有的索引。这适用于想要指定任意类型的索引来代替现有索引的情况。 ```python # 定义新的索引数组 new_indices = ['row_{}'.format(i) for i in range(len(df))] df.index = new_indices print("\n更新索引后的数据帧:") print(df) ``` #### 方法三:利用 `set_index` 来设定某一列为索引 对于那些有特殊意义的列(比如日期时间戳),可将其设为索引以便更方便地进行数据分析和查询操作[^3]。 ```python # 添加为 'date' 的列用于示范 dates = pd.date_range(start='2023-01-01', periods=len(df)) df['date'] = dates # 将某列设为索引 df_with_date_as_index = df.set_index('date') print("\n以'date' 列作为索引的数据帧:") print(df_with_date_as_index) ``` 以上三种方式可以根据实际应用场景灵活选用,满足不同情况下对 DataFrame 索引调整的需求。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值