pytorch 安装

1. 在torch安装之前查看自己显卡的驱动版本
nvidia-smi
2.在官网选择适合自己环境的版本:
在这里插入图片描述
就是上面这张图的样子,系统、语言、版本啥的根据自己环境选择。然后复制下面生成的命令进行安装。

也可以复制生成的下载地址:
在这里插入图片描述
然后再浏览器打开:https://download.pytorch.org/whl/cu118
然后需要下载下面红框中的三个分别进行下载:
在这里插入图片描述
我的python版本是3.10,torch需要2.1版本,系统是win10 x64。
torch选择:torch-2.1.0+cu118-cp310-cp310-win_amd64.whl
(如果需要显卡驱动一定要选择CUXXX,如果没有显卡选择cpu)
在这里插入图片描述
torchaudio选择:torchaudio-2.1.0+cu118-cp310-cp310-win_amd64.whl
在这里插入图片描述
torchversion选择:torchvision-0.16.0+cu118-cp310-cp310-win_amd64.whl
在这里插入图片描述
这单个文件下载完成在进行命令安装(./ 为文件存在在当前项目路径)
pip install ./torch-2.1.0+cu118-cp310-cp310-win_amd64.whl
pip install ./torchaudio-2.1.0+cu118-cp310-cp310-win_amd64.whl
pip install ./torchvision-0.16.0+cu118-cp310-cp310-win_amd64.whl

最后通过一下命令验证:

import torch
torch.cuda.device_count()
<think>嗯,用户的问题是关于安装指定版本的PyTorch时遇到的错误,提示找不到满足要求的版本。根据提供的引用内容,我需要综合这些信息来给出正确的安装步骤和注意事项。 首先,用户引用的内容提到,使用PyTorch官网的pip或conda命令可能不会自动安装GPU版本,需要手动指定带有cu后缀的版本。例如,用户想安装torch==2.1.0+cu118,但遇到了问题。这可能是因为镜像源中没有对应的版本,或者版本号拼写不正确。 引用[1]中给出的安装命令使用了清华镜像源,并且指定了cu118的版本。但用户执行时提示找不到版本,可能原因包括镜像源未正确配置,或者版本号在镜像中不存在。引用[4]中提到使用不同的CUDA版本(如cu121)的安装命令,说明不同CUDA版本对应的安装命令不同,需要确认用户的环境是否正确。 另外,引用[3]指出版本不兼容的问题,比如torchvision 0.16.2需要torch==2.1.2,但用户安装的是2.3.0。这说明版本匹配的重要性,必须确保torchtorchvision、torchaudio的版本严格对应。用户提供的版本组合是否正确呢?根据PyTorch官方文档,torch==2.1.0应该对应torchvision==0.16.0和torchaudio==2.1.0,但需要检查官方提供的兼容性表格。 用户可能的问题包括:使用了错误的CUDA版本、镜像源中没有指定版本的包、或者依赖项未正确指定。解决方案应包括使用正确的安装命令,确保镜像源包含所需版本,以及验证安装后的CUDA是否可用。 需要提醒用户检查CUDA驱动是否支持所需的CUDA工具包版本(如cu118需要CUDA 11.8),并确保安装命令中的URL正确。此外,可能需要使用--find-links参数直接指向PyTorch官方的whl文件,结合国内镜像源加速下载。 最后,验证安装是否成功,使用torch.cuda.is_available()来确认GPU支持是否启用。如果还是有问题,可能需要手动下载whl文件进行安装,或者调整依赖版本以匹配官方推荐的组合。</think>### 分步解决方案 1. **确认CUDA版本兼容性** 安装前需确保系统已安装PyTorch版本匹配的CUDA驱动。例如,`cu118`对应CUDA 11.8,需显卡驱动版本≥450.80.02[^1]。可通过终端输入以下命令查看CUDA版本: ```bash nvidia-smi ``` 2. **使用官方推荐安装命令** 通过PyTorch官网的[历史版本页面](https://pytorch.org/get-started/previous-versions/)查找正确的组合[^2]。对于`torch==2.1.0+cu118`,应使用以下命令: ```bash pip install torch==2.1.0+cu118 torchvision==0.16.0+cu118 torchaudio==2.1.0 --extra-index-url https://download.pytorch.org/whl/cu118 ``` 添加`--extra-index-url`参数确保从官方源获取正确版本[^4]。 3. **国内镜像加速与参数调整** 若下载缓慢,可叠加国内镜像源(如清华源),但需保留`--extra-index-url`以保证版本匹配: ```bash pip install torch==2.1.0+cu118 torchvision==0.16.0+cu118 torchaudio==2.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --extra-index-url https://download.pytorch.org/whl/cu118 ``` 4. **验证安装结果** 执行Python代码检查版本与GPU是否可用: ```python import torch print(torch.__version__) # 应输出2.1.0+cu118 print(torch.cuda.is_available()) # 应返回True[^5] ``` 5. **处理依赖冲突** 若出现类似`torchvision 0.16.2 requires torch==2.1.2`的报错[^3],需严格按官网版本对照表调整版本组合,例如: ```bash pip install torch==2.1.2+cu118 torchvision==0.16.2+cu118 torchaudio==2.1.2 ``` ### 关键注意事项 - **版本匹配**:PyTorchTorchVision、TorchAudio的版本必须严格对应,参考[官网版本对照表](https://pytorch.org/get-started/previous-versions/)[^2]。 - **CUDA工具包与驱动**:`cu118`需系统安装CUDA 11.8工具包,而非仅依赖PyTorch内置的CUDA运行时库。 - **优先使用官方源**:国内镜像可能缺少特定版本,通过`--extra-index-url`补充官方源可避免找不到包的问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值