关于算法的时间复杂度简要推理

1、概念解释

    T(n)=O(n)

    T(n):对于数组排序查找等问题来说,n代表数组个数,T(n)代表算法执行次数

    O(n):算法执行次数,当n→∞,代表算法的渐进时间复杂度,简称时间复杂度

2、算法推理

2.1、例如二分查找:

二分查找大致是从一个有序数组中先寻找中间值与预期值比较,然后摒弃不符合条件的一边,再从剩下的数组中寻找中间值继续和预期值比较,直到匹配到,或者剩下最后两个值还没匹配到。那么这个算法执行次数大致可表示为:

T(n) = T(n/2) + 1(1代表查找次数)

T(n) = T(n/4) + 2

T(n) = T(n/8) + 3

……

T(n) = T(n/n) + log2n = T(1) + log2n = 1 + log2n

当n∞时,1 + log2n → log2n

即T(n) = O(log2n)

2.2、例如快速排序:

快速排序大致是先选定数组的一个坐标值,遍历一遍数组,小于该值的数据放在左边(记为小子数组),大于等于的放在右边(记为大子数组),小子数组再选择一个坐标值重复之前的操作,大子数组再选择一个坐标值重复之前的操作,直至最后坐标值两边的子数组剩下一个或两个值,完成排序。那么这个算法执行次数大致可表示为:

T(n) = 2T(n/2) + n(n代表比较次数)

T(n) = 4T(n/4) + 2n

T(n) = 8T(n/8) + 3n

……

T(n) = nT(n/n) + log2n * n = nT(1) + nlog2n = n + nlog2n

当n∞时,n + nlog2n nlon2n

即T(n) = O(nlog2n)

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mjx_2011

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值